Skip to main content

Advertisement

Log in

Cherry Picking: A Characterization of the Temporal Hybridization Number for a Set of Phylogenies

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recently, we have shown that calculating the minimum–temporal-hybridization number for a set \({\mathcal{P}}\) of rooted binary phylogenetic trees is NP-hard and have characterized this minimum number when \({\mathcal{P}}\) consists of exactly two trees. In this paper, we give the first characterization of the problem for \({\mathcal{P}}\) being arbitrarily large. The characterization is in terms of cherries and the existence of a particular type of sequence. Furthermore, in an online appendix to the paper, we show that this new characterization can be used to show that computing the minimum–temporal hybridization number for two trees is fixed-parameter tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht, B., Linz, C., & Scornavacca, C. (2012). A first step toward computing all hybridization networks for two rooted binary phylogenetic trees. J. Comput. Biol., 19, 1227–1242.

    Article  MathSciNet  Google Scholar 

  • Baroni, M., Grünewald, S., Moulton, V., & Semple, C. (2005). Bounding the number of hybridization events for a consistent evolutionary history. J. Math. Biol., 51, 171–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Baroni, M., Semple, C., & Steel, M. (2006). Hybrids in real time. Syst. Biol., 44, 46–56.

    Article  Google Scholar 

  • Bordewich, M., & Semple, C. (2007). Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable. IEEE/ACM Trans. Comput. Biol. Bioinform., 4, 458–466.

    Article  Google Scholar 

  • Bordewich, M., Linz, S., John, K. St., & Semple, C. (2007). A reduction algorithm for computing the hybridization number of two trees. Evol. Bioinform., 3, 86–98.

    Google Scholar 

  • Cardona, G., Rossello, F., & Valiente, G. (2009). Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform., 6, 552–569.

    Article  Google Scholar 

  • Chen, Z. Z., & Wang, L. (2012). Algorithms for reticulate networks of multiple phylogenetic trees. IEEE/ACM Trans. Comput. Biol. Bioinform., 9, 372–384.

    Article  Google Scholar 

  • Chen, Z. Z., & Wang, L. (2013). An ultrafast tool for minimum reticulate networks. J. Comput. Biol., 20, 38–41.

    Article  MathSciNet  Google Scholar 

  • Collins, J., Linz, S., & Semple, C. (2011). Quantifying hybridization in realistic time. J. Comput. Biol., 18, 1305–1318.

    Article  MathSciNet  Google Scholar 

  • Gramm, J., & Niedermeier, R. (2003). A fixed-parameter algorithm for minimum quartet inconsistency. J. Comput. Syst. Sci., 67, 723–741.

    Article  MATH  MathSciNet  Google Scholar 

  • Gramm, J., Nickelsen, A., & Tantau, T. (2008). Fixed-parameter algorithms in phylogenetics. Comput. J., 51, 79–101.

    Article  Google Scholar 

  • Humphries, P. J., Linz, S., & Semple, C. (2013). On the complexity of computing the temporal hybridization number for two phylogenies. Discrete Appl. Math., 161(7–8), 871–880.

    Article  MATH  MathSciNet  Google Scholar 

  • Huson, D. H., & Scornavacca, C. (2011). A survey of combinatorial methods for phylogenetic networks. Genome Biol. Evol., 3, 23–35.

    Article  Google Scholar 

  • Kelk, S., van Iersel, L., Lekić, N., Linz, S., Scornavacca, C., & Stougie, L. (2012). Cycle killer…qu’est-ce que c’est? On the comparative approximability of hybridization number and directed feedback vertex set. SIAM J. Discrete Math., 26, 1635–1656.

    Article  MATH  MathSciNet  Google Scholar 

  • Linz, S., Semple, C., & Stadler, T. (2010). Analyzing and reconstructing reticulation networks under timing constraints. J. Math. Biol., 61, 715–735.

    Article  MATH  MathSciNet  Google Scholar 

  • Piovesan, T., & Kelk, S. (2013). A simple fixed parameter tractable algorithm for computing the hybridization number of two (not necessarily binary) trees. IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 18–25.

    Article  Google Scholar 

  • van Iersel, L., & Kelk, S. (2011). When two trees go to war. J. Theor. Biol., 269, 245–255.

    Article  MATH  Google Scholar 

  • Whidden, C., Beiko, R. G., & Zeh, N. (2013). Fixed-parameter and approximation algorithms for maximum agreement forests. SIAM J. Comput. 42(4), 1431–1466.

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, Y. (2010). Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees. Bioinformatics, 26, i140–i148.

    Article  Google Scholar 

  • Wu, Y., & Wang, J. (2010). Fast computation of the exact hybridization number of two phylogenetic trees. In LNCS: Vol. 6053. Proceedings of the International Symposium on Bioinformatics Research and Applications (pp. 203–214).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the referees for their helpful comments. S.L. was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. C.S. was supported by the New Zealand Marsden Fund and the Allan Wilson Centre for Molecular Ecology and Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Linz.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphries, P.J., Linz, S. & Semple, C. Cherry Picking: A Characterization of the Temporal Hybridization Number for a Set of Phylogenies. Bull Math Biol 75, 1879–1890 (2013). https://doi.org/10.1007/s11538-013-9874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9874-x

Keywords

Navigation