Skip to main content

Fast Computation of the Exact Hybridization Number of Two Phylogenetic Trees

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6053))

Included in the following conference series:

Abstract

Hybridization is a reticulate evolutionary process. An established problem on hybridization is computing the minimum number of hybridization events, called the hybridization number, needed in the evolutionary history of two phylogenetic trees. This problem is known to be NP-hard. In this paper, we present a new practical method to compute the exact hybridization number. Our approach is based on an integer linear programming formulation. Simulation results on biological and simulated datasets show that our method (as implemented in program SPRDist) is more efficient and robust than an existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baroni, M., Grunewald, S., Moulton, V., Semple, C.: Bounding the number of hybridization events for a consistent evolutionary history. J. Math. Biol. 51, 171–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. Annals of Combinatorics 8, 391–408 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evolutionary Biology 6, 15 (2006)

    Article  Google Scholar 

  4. Bonet, M., John, K.S., Mahindru, R., Amenta, N.: Approximating subtree distances between phylogenies. J. of Comp. Biology 13, 1419–1434 (2006)

    Article  Google Scholar 

  5. Bordewich, M., Linz, S., John, K.S., Semple, C.: A reduction algorithm for computing the hybridization number of two trees. Evolutionary Bioinformatics 3, 86–98 (2007)

    Google Scholar 

  6. Bordewich, M., McCartin, C., Semple, C.: A 3-approximation algorithm for the subtree distance between phylogenies. J. Discrete Algorithms 6, 458–471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent evolutionary history. Discrete Applied Mathematics 155, 914–928 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grass Phylogeny Working Group. Phylogeny and subfamilial classification of the grasses (poaceae). Ann. Mo. Bot. Gard. 88, 373–457 (2001)

    Google Scholar 

  10. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Appl. Math 71, 153–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huson, D., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267 (2006)

    Article  Google Scholar 

  12. Linder, C.R., Moret, B.M.E., Nakhleh, L., Warnow, T.: Network (reticulate) evolution: biology, models, and algorithms (2004)

    Google Scholar 

  13. Linz, S.: Personal communications

    Google Scholar 

  14. Linz, S., Semple, C.: Hybridization in nonbinary trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6, 30–45 (2009)

    Article  Google Scholar 

  15. Nakhleh, L.: Evolutionary phylogenetic networks: models and issues. In: Heath, L., Ramakrishnan, N. (eds.) The Problem Solving Handbook for Computational Biology and Bioinformatics. Springer, Heidelberg (In press 2010)

    Google Scholar 

  16. Rodrigues, E.M., Sagot, M.F., Wakabayashi, Y.: Some approximation results for the maximum agreement forest problem. In: Proceedings of RANDOM-APPROX 2001, pp. 159–169 (2001)

    Google Scholar 

  17. Schmidt, H.: Phylogenetic trees from large datasets. PhD thesis, Heinrich-Heine-Universität, Düsseldorf (2003)

    Google Scholar 

  18. Semple, C.: Hybridization networks. In: Gascuel, O., Steel, M. (eds.) Reconstructing Evolution: New Mathematical and Computational Advances, Oxford, pp. 277–309 (2007)

    Google Scholar 

  19. Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J. on Computing 2, 211–216 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25, 190–196 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Y., Wang, J. (2010). Fast Computation of the Exact Hybridization Number of Two Phylogenetic Trees. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds) Bioinformatics Research and Applications. ISBRA 2010. Lecture Notes in Computer Science(), vol 6053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13078-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13078-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13077-9

  • Online ISBN: 978-3-642-13078-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics