Skip to main content
Log in

A Mathematical Study of the Differential Effects of Two SERCA Isoforms on Ca2+ Oscillations in Pancreatic Islets

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cytosolic Ca2+ dynamics are important in the regulation of insulin secretion from the pancreatic β-cells within islets of Langerhans. These dynamics are sculpted by the endoplasmic reticulum (ER), which takes up Ca2+ when cytosolic levels are high and releases it when cytosolic levels are low. Calcium uptake into the ER is through sarcoendoplasmic reticulum Ca2+-ATPases, or SERCA pumps. Two SERCA isoforms are expressed in the β-cell: the high Ca2+ affinity SERCA2b pump and the low affinity SERCA3 pump. Recent experiments with islets from SERCA3 knockout mice have shown that the cytosolic Ca2+ oscillations from the knockout islets are characteristically different from those of wild type islets. While the wild type islets often exhibit compound Ca2+ oscillations, composed of fast oscillations superimposed on much slower oscillations, the knockout islets rarely exhibit compound oscillations, but produce slow (single component) oscillations instead. Using mathematical modeling, we provide an explanation for this difference. We also investigate the effect that SERCA2b inhibition has on the model β-cell. Unlike SERCA3 inhibition, we demonstrate that SERCA2b inhibition has no long-term effect on cytosolic Ca2+ oscillations unless a store-operated current is activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arredouani, A., Guiot, Y., Jonas, J.-C., Liu, L.H., Nenquin, M., Pertusa, J.A., Rahier, J., Rolland, J.-F., Shull, G.E., Stevens, M., Wuytack, F., Henquin, J.C., Gilon, P., 2002a. SERCA3 ablation does not impair insulin secretion but suggests distinct roles of different sarcoendoplasmic reticulum Ca2+ pumps for Ca2+ homeostasis in pancreatic β-cells. Diabetes 51, 3245–253.

    Article  Google Scholar 

  • Arredouani, A., Henquin, J.-C., Gilon, P., 2002b. Contribution of the endoplasmic reticulum to the glucose-induced [Ca2+]c response in mouse pancreatic islets. Am. J. Physiol. 282, E982–E991.

    Google Scholar 

  • Ashcroft, F.M., Harrison, D.E., Ashcroft, S.J.H., 1984. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312, 446–48.

    Article  Google Scholar 

  • Beauvois, M.C., Merezak, C., Jonas, J.-C., Ravier, M.A., Henquin, J.-C., 2006. Glucose-induced mixed [Ca2+]c oscillations in mouse β-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am. J. Physiol. 290, C1503–C1511.

    Article  Google Scholar 

  • Bergsten, P., 1995. Slow and fast oscillations of cytoplasmic Ca2+ in pancreatic islets correspond to pulsatile insulin release. Am. J. Physiol. 268, E282–E287.

    Google Scholar 

  • Bergsten, P., Hellman, B., 1993. Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes 42, 670–74.

    Article  Google Scholar 

  • Bergsten, P., Grapengiesser, E., Gylfe, E., Tengholm, A., Hellman, B., 1994. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 269, 8749–753.

    Google Scholar 

  • Bertram, R., Sherman, A., 2004a. A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol. 66, 1313–344.

    Article  MathSciNet  Google Scholar 

  • Bertram, R., Sherman, A., 2004b. Filtering of calcium transients by the endoplasmic reticulum in pancreatic β-cells. Biophys. J. 87, 3775–785.

    Article  Google Scholar 

  • Bertram, R., Butte, M., Kiemel, T., Sherman, A., 1995a. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–39.

    MATH  Google Scholar 

  • Bertram, R., Smolen, P., Sherman, A., Mears, D., Atwater, I., Martin, F., Soria, B., 1995b. A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic β-cells. Biophys. J. 68, 2323–332.

    Article  Google Scholar 

  • Bertram, R., Previte, J., Sherman, A., Kinard, T.A., Satin, L.S., 2000. The phantom burster model for pancreatic β-cells. Biophys. J. 79, 2880–892.

    Article  Google Scholar 

  • Bertram, R., Satin, L., Zhang, M., Smolen, P., Sherman, A., 2004. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J. 87, 3074–087.

    Article  Google Scholar 

  • Bertram, R., Satin, L.S., Pedersen, M.G., Luciani, D.S., Sherman, A., 2007a. Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets. Biophys. J. 92, 1544–555.

    Article  Google Scholar 

  • Bertram, R., Sherman, A., Satin, L.S., 2007b. Metabolic and electrical oscillations: Partners in controlling pulsatile insulin secretion. Am. J. Physiol. 293, E890–E900.

    Google Scholar 

  • Cook, D.L., 1983. Isolated islets of Langerhans have slow oscillations of electrical activity. Metabolism 32, 681–85.

    Article  Google Scholar 

  • Cook, D., Porte, D.J., Crill, W.E., 1981. Voltage dependence of rhythmic plateau potentials of pancreatic islet cells. Am. J. Physiol. 240, E290–E296.

    Google Scholar 

  • Dahlgren, G.M., Kauri, L.M., Kennedy, R.T., 2005. Substrate effects on oscillations in metabolism, calcium and secretion in single mouse islets of Langerhans. Biochim. Biophys. Acta 1724, 23–6.

    Google Scholar 

  • Ermentrout, G.B., 2002. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Gilon, P., Arredouani, A., Gailly, P., Gromada, J., Henquin, J.-C., 1999. Uptake and release of Ca2+ by the endoplasmic reticulum contribute to the oscillations of the cytosolic Ca2+ concentration triggered by Ca2+ influx in the electrically excitable pancreatic β-cell. J. Biol. Chem. 274, 20197–0205.

    Article  Google Scholar 

  • Henquin, J.C., 1988. ATP-sensitive K+ channels may control glucose-induced electrical activity in pancreatic β-cells. Biochem. Biophys. Res. Commun. 156, 769–75.

    Article  Google Scholar 

  • Henquin, J.C., 2000. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–760.

    Article  Google Scholar 

  • Henquin, J.C., Meissner, H.P., Schmeer, W., 1982. Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflügers Archiv. 393, 322–27.

    Article  Google Scholar 

  • Liu, Y.-J., Grapengiesser, E., Glyfe, E., Hellman, B., 1995. Glucose induces oscillations of cytoplasmic Ca2+, Sr2+ and Ba2+ in pancreatic β-cells without participation of the thapsigargin-sensitive store. Cell. Calcium. 18, 165–73.

    Article  Google Scholar 

  • Liu, Y.-J., Tengholm, A., Grapengiesser, E., Hellman, B., Gylfe, E., 1998. Origin of slow and fast oscillations of Ca2+ in mouse pancreatic islets. J. Physiol. 508, 471–81.

    Article  Google Scholar 

  • Mears, D., Zimliki, C.L., 2004. Muscarinic agonists activate Ca2+ store-operated and independent ionic currents in insulin-secreting HIT-T15 cells and mouse pancreatic β-cells. J. Membr. Biol. 197, 59–0.

    Article  Google Scholar 

  • Miura, Y., Henquin, J.C., Gilon, P., 1997. Emptying of intracellular Ca2+ stores stimulates Ca2+ entry in mouse pancreatic β-cells by both direct and indirect mechanisms. J. Physiol. 503, 387–98.

    Article  Google Scholar 

  • Nunemaker, C.S., Zhang, M., Wasserman, D.H., McGuinness, O.P., Powers, A.C., Bertram, R., Sherman, A., Satin, L.S., 2005. Individual mice can be distinguished by the period of their islet calcium oscillations: Is there an intrinsic islet period that is imprinted in vivo? Diabetes 54, 3517–522.

    Article  Google Scholar 

  • Pørksen, N., Munn, S., Steers, J., Vore, S., Veldhuis, J., Butler, P., 1995. Pulsatile insulin secretion accounts for 70% of total insulin secretion during fasting. Am. J. Physiol. 269, E478–E488.

    Google Scholar 

  • Rinzel, J., 1985. Bursting oscillations in an excitable membrane model. In: Sleeman, B.D., Jarvis, R.J. (Eds.), Ordinary and Partial Differential Equations. Lecture Notes in Mathematics, pp. 304–16. Springer, New York. 10.1007/BFb0074739

    Chapter  Google Scholar 

  • Roe, M.W., Worley III, J.F., Qian, F., Tamarina, N., Mittal, A.A., Dralyuk, F., Blair, N.T., Mertz, R.J., Philipson, L.H., Dukes, I.D., 1998. Characterization of a Ca2+ release-activated nonselective cation current regulating membrane potential and [Ca2+]i oscillations in transgenetically derived β-cells. J. Biol. Chem. 273, 10402–0410.

    Article  Google Scholar 

  • Santos, R.M., Rosario, L.M., Nadal, A., Garcia-Sancho, J., Soria, B., Valdeolmillos, M., 1991. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflügers Archiv. 418, 417–22.

    Article  Google Scholar 

  • Smolen, P., 1995. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. J. Theor. Biol. 174, 137–48.

    Article  Google Scholar 

  • Sneyd, J., Tsaneva-Atanasova, K., Bruce, J.I.E., Straub, S.V., Giovannucci, D.R., Yule, D.I., 2003. A model of calcium waves in pancreatic and parotid acinar cells. Biophys. J. 85, 1392–405.

    Article  Google Scholar 

  • Tornheim, K., 1979. Oscillations of the glycolytic pathway and the purine nucleotide cycle. J. Theor. Biol. 79, 491–41.

    Article  Google Scholar 

  • Tornheim, K., 1997. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46, 1375–380.

    Article  Google Scholar 

  • Tornheim, K., Lowenstein, J.M., 1974. The purine nucleotide cycle: IV. Interactions with oscillations of the glycolytic pathway in muscle extracts. J. Biol. Chem. 249, 3241–247.

    Google Scholar 

  • Tornheim, K., Lowenstein, J.M., 1975. The purine nucleotide cycle: Control of phosphofructokinase and glycolytic oscillations in muscle extracts. J. Biol. Chem. 250, 6304–314.

    Google Scholar 

  • Tornheim, K., Lowenstein, J.M., 1976. Control of phosphofructokinase from rat skeletal muscle: effects of fructose diphosphate, AMP, ATP, and citrate. J. Biol. Chem. 251, 7322–328.

    Google Scholar 

  • Váradi, A., Molnár, E., Östenson, C.G., Ashcroft, S.J.H., 1996. Isoforms of endoplasmic reticulum Ca2+-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem. J. 319, 521–27.

    Google Scholar 

  • Yaney, G.C., Schultz, V., Cunningham, B.A., Dunaway, G.A., Corkey, B.E., Tornheim, K., 1995. Phosphofructokinase isozymes in pancreatic islets and clonal β-cells (INS-1). Diabetes 44, 1285–289.

    Article  Google Scholar 

  • Zhang, M., Goforth, P., Sherman, A., Bertram, R., Satin, L., 2003. The Ca2+ dynamics of isolated mouse β-cells and islets: Implications for mathematical models. Biophys. J. 84, 2852–870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bertram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, R., Arceo, R.C. A Mathematical Study of the Differential Effects of Two SERCA Isoforms on Ca2+ Oscillations in Pancreatic Islets. Bull. Math. Biol. 70, 1251–1271 (2008). https://doi.org/10.1007/s11538-008-9298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9298-1

Keywords

Navigation