Skip to main content

Advertisement

Log in

Learning through Making and Maker Education

  • Original Paper
  • Published:
TechTrends Aims and scope Submit manuscript

Abstract

In this paper, we provide an overview of the current efforts in maker education, supported by a review of empirical studies. Our synthesis will inform the community about learning outcomes, potential and common issues, challenges, resources, and future research direction regarding maker education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agency by Design (2015). Maker-centered learning and the development of self: Preliminary findings of the agency by design project. Project Zero, Harvard Graduate School of Education. Retrieved from http://www.pz.harvard.edu/sites/default/files/Maker-Centered-Learning-and-the-Development-of-Self_AbD_Jan-2015.pdf.

  • Baleshta, J., Teertstra, P., & Luo, B. (2015). Closing the loop: Integrating 3D printing with engineering design graphics for large class sizes. Proceedings of the Canadian Engineering Education Association. Hamilton, Ontario, Canada, May 31–June 3, 2015.

  • Bevan, B., Gutwill, J. P., Petrich, M., & Wilkinson, K. (2015). Learning through stem-rich tinkering: Findings from a jointly negotiated research project taken up in practice. Science Education, 99(1), 98–120.

    Article  Google Scholar 

  • Boise State University (2016). Making & achieving go hand in hand. EdTech Connection Blog. Retrieved from https://edtech.boisestate.edu/15252-2/.

  • Brahms, L. J. (2014). Making as a learning process: Identifying and supporting family learning in informal settings (doctoral dissertation). Retrieved from ProQuest. (3582510).

  • Brown, A. (2015). 3D printing in instructional settings: Identifying a curricular hierarchy of activities. TechTrends, 59(5), 16–24. doi:10.1007/s11528-015-0887-1.

    Article  Google Scholar 

  • Buechley, L., & Eisenberg, M. (2009). Fabric PCBs, electronic sequins, and socket buttons: Techniques for e-textile craft. Personal and Ubiquitous Computing, 13(2), 133–150.

    Article  Google Scholar 

  • Carnegie Mellon University (2016). Integrative design, arts & technology network. Retrieved from http://ideate.cmu.edu/undergraduate-programs/physical-computing/.

  • Dougherty, D. (2013). The maker mindset. In M. Honey & D. E. Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp. 7–11). New York: Routledge.

    Google Scholar 

  • Gershenfeld, N. (2007). Fab: The coming revolution on your desktop–from personal computers to personal fabrication. New York: Basic Books, Inc..

    Google Scholar 

  • Google Science Fair (2016). Home. Retrieved from https://www.googlesciencefair.com/en/.

  • Gutwill, J. P., Hido, N., & Sindorf, L. (2015). Research to practice: Observing learning in tinkering activities. Curator: The Museum Journal, 58(2), 151–168.

    Article  Google Scholar 

  • Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard Educational Review, 84(4), 495–504.

    Article  Google Scholar 

  • Harvard Educational Review Editorial Board. (2014). The maker movement in education: Designing, creating, and learning across contexts. Harvard Educational Review, 84(4), 492–494 Retrieved from http://hepg.org/her-home/issues/harvard-educational-review-volume-84-number-4/herarticle/symposium.

    Article  Google Scholar 

  • Hira, A., Joslyn, C. H., & Hynes, M. M. (2014). Classroom makerspaces: Identifying the opportunities and challenges. Proceedings of IEEE Frontiers in Education Conference. Madrid, Spain, October 22–25, 2014.

  • Kafai, Y. B., & Peppler, K. A. (2014). Transparency reconsidered: Creative, critical and connected making with e-textiles. In M. Boaler & M. Ratto (Eds.), DIY citizenship: Participatory practices of politics, culture and media (pp. 300–310). Cambridge: The MIT Press.

    Google Scholar 

  • Kafai, Y. B., Fields, D. A., & Searle, K. A. (2014a). Electronic textiles as disruptive designs: Supporting and challenging maker activities in schools. Harvard Educational Review, 84(4), 532–556.

    Article  Google Scholar 

  • Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014b). A crafts-oriented approach to computing in high school: Introducing computational concepts, practices, and perspectives with electronic textiles. ACM Transactions on Computing Education (TOCE), 14(1), 1–20. doi:10.1145/2576874.

    Article  Google Scholar 

  • Kafai, Y., Searle, K., Martinez, C., & Brayboy, B. (2014c). Ethnocomputing with electronic textiles: Culturally responsive open design to broaden participation in computing in American Indian youth and communities. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education (pp. 241–246). ACM.

  • Kostakis, V., Niaros, V., & Giotitsas, C. (2015). 3D printing as a means of learning: An educational experiment in two high schools in Greece. Telematics and Informatics, 32(1), 118–128. doi:10.1016/j.tele.2014.05.001.

    Article  Google Scholar 

  • Maker Camp (2016). About us. Retrieved from http://makercamp.com/about/.

  • Maker Education Initiative (2016). Home. Retrieved from http://makered.org.

  • MakeSchools (2016a). Find maker schools. Retrieved from http://make.xsead.cmu.edu/knowledgebase/schools/.

  • MakeSchools (2016b). Boise State University. Retrieved from http://make.xsead.cmu.edu/knowledgebase/schools/schools/boise-state-university.

  • Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College Engineering Education Research (J-PEER), 5(1), 30–39. doi:10.7771/2157-9288.1099.

  • Martinez, S. L., & Stager, G. (2013). Invent to learn: Making, tinkering, and engineering in the classroom. Torrance: Constructing Modern Knowledge Press.

    Google Scholar 

  • Moorefield-Lang, H. (2015). Change in the making: Makerspaces and the ever-changing landscape of libraries. TechTrends, 59(3), 107–112. doi:10.1007/s11528-015-0860-z.

    Article  Google Scholar 

  • National Research Council (United States). Committee on Information Technology Literacy. (1999). Being fluent with information technology. Washington, DC: The National Academies Press.

    Google Scholar 

  • New York University (2015). ITP physical computing. Retrieved from https://itp.nyu.edu/physcomp/.

  • O’Sullivan, D., & Igoe, T. (2014). Physical computing: Sensing and controlling the physical world with computers. Boston: Thomson Course Technology.

    Google Scholar 

  • Oliver, K. M. (2016). Professional development considerations for makerspace leaders, part one: Addressing “what?” and “why?”. TechTrends, 60, 160–166. doi:10.1007/s11528-016-0028-5.

    Article  Google Scholar 

  • Peppler, K., & Bender, S. (2013). Maker movement spreads innovation one project at a time. Phi Delta Kappan, 95(3), 22–27.

    Article  Google Scholar 

  • Peppler, K., & Glosson, D. (2013). Stitching circuits: Learning about circuitry through e-textile materials. Journal of Science Education and Technology, 22(5), 751–763.

    Article  Google Scholar 

  • Santo, R. (2013). Towards hacker literacies: What Facebook’s privacy snafus can teach us about empowered technological practices. Digital Culture & Education, 5(1), 18–33.

    Google Scholar 

  • Schrock, A. R. (2014). Education in disguise: Culture of a hacker and maker space. InterActions: UCLA Journal of Education and Information Studies, 10(1), 1-25. Retrieved from https:// escholarship.org/uc/item/0js1n1qg

  • Science Museum of Minnesota (2015). Building and sustaining a thriving maker hub. Guidance from pioneering programs in Pittsburgh. Retrieved from http://makered.org/wp-content/uploads/2014/12/Building-and-Sustaining-a-Thriving-Maker-Hub.pdf.

  • Sefton-Green, J. (2013). Learning at not-school. Cambridge: MIT Press.

    Google Scholar 

  • Sheridan, K., Halverson, E. R., Litts, B., Brahms, L., Jacobs-Priebe, L., & Owens, T. (2014). Learning in the making: A comparative case study of three makerspaces. Harvard Educational Review, 84(4), 505–531.

    Article  Google Scholar 

  • Sousa, D. A., & Pilecki, T. (2013). From STEM to STEAM: Using brain-compatible strategies to integrate the arts. Thousand Oaks: Corwin.

    Google Scholar 

  • Stanford Design School (2016). Breaker challenge. Retrieved from http://futureofstuffchallenge.org.

  • TechShop (2016). TechShop makerspace academy. Retrieved from http://www.techshop.ws/Maker_Space_Academy.html.

  • The White House (2014a). Building a nation of makers: Universities and colleges pledge to expand opportunities to make. Executive Office of the President. Retrieved from https://www.whitehouse.gov/sites/default/files/microsites/ostp/building_a_nation_of_makers.pdf.

    Google Scholar 

  • The White House (2014b). Fact sheet: President Obama to host first-ever white house maker faire. Office of the Press Secretary. Retrieved from https://www.whitehouse.gov/the-press-office/2014/06/18/fact-sheet-president-obama-host-first-ever-white-house-maker-faire.

  • The White House (2015). Fact sheet: President Obama announces over $240 million in new STEM commitments at the 2015 white house science fair. Office of the Press Secretary. Retrieved from https://www.whitehouse.gov/the-press-office/2015/03/23/fact-sheet-president-obama-announces-over-240-million-new-stem-commitmen.

  • The White House (2016) Nation of makers. Retrieved from https://www.whitehouse.gov/nation-of-makers.

  • University of Advancing Technology (2016). Top technology college. Retrieved from http://www.uat.edu.

  • University of Wisconsin-Stout (2016). Online professional development. Retrieved from http://www.uwstout.edu/soe/profdev/maker.cfm.

  • Utah State University (2016). Instructional technology & learning sciences syllabi. Retrieved from https://itls.usu.edu/courses/syllabi.

  • Wardrip, P. S., & Brahms, L. (2015). Learning practices of making: Developing a framework for design. In Proceedings of the 14th International Conference on Interaction Design and Children (pp. 375–378). ACM.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chang Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, YC., Baldwin, S. & Ching, YH. Learning through Making and Maker Education. TechTrends 61, 589–594 (2017). https://doi.org/10.1007/s11528-017-0172-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11528-017-0172-6

Keywords

Navigation