Skip to main content
Log in

Prediction of Resistance Mutations Against Upcoming Anaplastic Lymphoma Kinase Inhibitors

  • Original Research Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Chromosomal aberrations involving the anaplastic lymphoma kinase (ALK) gene have been observed in approximately 4% of patients with non-small cell lung cancer (NSCLC). Although these patients clinically benefit from treatment with various ALK tyrosine kinase inhibitors (ALK-TKIs), none of these can inhibit the development of resistance mutations. Considering inevitable drug resistance and the variety of available ALK-TKIs, it is necessary to predict the pattern of drug-resistance mutations to determine the optimal treatment strategy.

Objective

We aimed to establish a polymerase chain reaction (PCR)-based system to predict the development of resistance mutations against ALK-TKIs and identify therapeutic strategies using the upcoming ALK-TKIs repotrectinib (TPX-0005) and ensartinib (X-396) following recurrence on first-line alectinib treatment for ALK-positive NSCLC.

Methods

An error-prone PCR-based method for predicting drug resistance mutations was established and the half-maximal inhibitory concentration (IC50) values of the predicted ALK mutations were evaluated in a Ba/F3 cell-based assay.

Results

We predicted several resistance mutations against repotrectinib and ensartinib, and demonstrated that the next-generation ALK-TKI TPX-0131, was active against repotrectinib-resistant mutations and that the FLT3 inhibitor gilteritinib was active against ensartinib-resistant mutations.

Conclusions

We developed a PCR-based system for predicting drug resistance mutations. When this system was applied to repotrectinib and ensartinib, the results suggested that these drugs can be used for the second-line treatment of ALK-positive NSCLC. Predicting resistance mutations against TKIs will provide useful information to aid in the development of effective therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jordan EJ, Kim HY, Arcila ME, Barron D, Chakravarty D, Gao JJ, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017;7:596–609. https://doi.org/10.1158/2159-8290.CD-16-1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang S, Qu X, Hu X, Hou K, Liu Y, Che X. Assessment of nine driver gene mutations in surgically resected samples from patients with non-small-cell lung cancer. Cancer Manag Res. 2020;12:4029–38. https://doi.org/10.2147/CMAR.S250822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6. https://doi.org/10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  4. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–4. https://doi.org/10.1126/science.8122112.

    Article  CAS  PubMed  Google Scholar 

  5. Bischof D, Pulford K, Mason DY, Morris SW. Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol. 1997;17:2312–25. https://doi.org/10.1128/mcb.17.4.2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene. 2001;20:5623–37. https://doi.org/10.1038/sj.onc.1204594.

    Article  CAS  PubMed  Google Scholar 

  7. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167–77. https://doi.org/10.1056/NEJMoa1408440.

    Article  CAS  PubMed  Google Scholar 

  8. Peters S, Camidge R, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377:829–38. https://doi.org/10.1056/NEJMoa1704795.

    Article  CAS  PubMed  Google Scholar 

  9. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6:1118–33. https://doi.org/10.1158/2159-8290.CD-16-0596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18:1590–9. https://doi.org/10.1016/S1470-2045(17)30680-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell. 2015;28:70–81. https://doi.org/10.1016/j.ccell.2015.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dagogo-Jack I, Rooney M, Lin JJ, Nagy R, Yeap BY, Hubbeling H, et al. Treatment with next-generation ALK inhibitors fuels plasma ALK mutation diversity. Clin Cancer Res. 2019;25:6662–70. https://doi.org/10.1158/1078-0432.ccr-19-1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoda S, Lin JJ, Lawrence MS, Burke B, Friboulet L, Langenbucher A, et al. Sequential ALK inhibitors can select for lorlatinib-resistant compound ALK mutations in ALK-positive lung cancer. Cancer Discov. 2018;8:714–29. https://doi.org/10.1158/2159-8290.cd-17-1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med. 2016;374:54–61. https://doi.org/10.1056/NEJMoa1508887.

    Article  CAS  PubMed  Google Scholar 

  15. Okada K, Araki M, Sakashita T, Ma B, Kanada R, Yanagitani N, et al. Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine. 2019;41:105–19. https://doi.org/10.1016/j.ebiom.2019.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mizuta H, Okada K, Araki M, Adachi J, Takemoto A, Kutkowska J, et al. Gilteritinib overcomes lorlatinib resistance in ALK-rearranged cancer. Nat Commun. 2021;12:1261. https://doi.org/10.1038/s41467-021-21396-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaw AT, Bauer TM, Marinis F, Felip E, Goto Y, Liu G, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med. 2020;383:2018–29. https://doi.org/10.1056/NEJMoa2027187.

    Article  CAS  PubMed  Google Scholar 

  18. Bauer DC, McMorran BJ, Foote SJ, Burgio G. Genome-wide analysis of chemically induced mutations in mouse in phenotype-driven screens. BMC Genomics. 2015;16:866. https://doi.org/10.1186/s12864-015-2073-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5. https://doi.org/10.1038/nmeth.1318.

    Article  CAS  PubMed  Google Scholar 

  20. Berggren WT, Lutz M, Modesto V. General Spinfection Protocol. StemBook; 2012. https://doi.org/10.3824/stembook.1.85.1.

  21. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. https://doi.org/10.1038/s41587-019-0201-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Drilon A, Ou SHI, Cho BC, Kim DW, Lee J, Lin J, et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov. 2018;8:1227–36. https://doi.org/10.1158/2159-8290.cd-18-0484.

    Article  CAS  PubMed  Google Scholar 

  24. Horn L, Infante JR, Reckamp KL, Blumenschein GR, Leal TA, Waqar SN, et al. Ensartinib (X-396) in ALK-positive non-small cell lung cancer: results from a first-in-human phase I/II, multicenter study. Clin Cancer Res. 2018;24:2771–9. https://doi.org/10.1158/1078-0432.ccr-17-2398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Recondo G, Mezquita L, Facchinetti F, Planchard D, Gazzah A, Bigot L, et al. Diverse resistance mechanisms to the third-generation ALK inhibitor lorlatinib in ALK-rearranged lung cancer. Clin Cancer Res. 2020;26:242–55. https://doi.org/10.1158/1078-0432.ccr-19-1104.

    Article  CAS  PubMed  Google Scholar 

  26. Tan DSW, Thomas M, Kim DW, Szpakowski S, Urban P, Mehra R, et al. Genetic landscape of patients with ALK-rearranged non-small-cell lung cancer (NSCLC) and response to ceritinib in ASCEND-1 study. Lung Cancer. 2022;163:7–13. https://doi.org/10.1016/j.lungcan.2021.11.007.

    Article  CAS  PubMed  Google Scholar 

  27. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363:1734–9. https://doi.org/10.1056/NEJMoa1007478.

    Article  CAS  PubMed  Google Scholar 

  28. Murray BW, Zhai D, Deng W, Zhang X, Ung J, Nguyen V, et al. TPX-0131, a potent CNS-penetrant, next-generation inhibitor of wild-type ALK and ALK-resistant mutations. Mol Cancer Ther. 2021;20:1499–507. https://doi.org/10.1158/1535-7163.mct-21-0221.

    Article  CAS  PubMed  Google Scholar 

  29. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  30. Oser MG, Niederst MJ, Sequist LV, Engelman JA. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 2015;16:e165-172. https://doi.org/10.1016/s1470-2045(14)71180-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halliday PR, Blakely CM, Bivona TG. Emerging targeted therapies for the treatment of non-small cell lung cancer. Curr Oncol Rep. 2019;21:21. https://doi.org/10.1007/s11912-019-0770-x.

    Article  PubMed  Google Scholar 

  32. Yuan M, Huang LL, Chen JH, Wu J, Xu Q. The emerging treatment landscape of targeted therapy in non- small-cell lung cancer. Signal Transduct Target Ther. 2019;4:61. https://doi.org/10.1038/s41392-019-0099-9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Song X, Zhong H, Qu X, Yang L, Jiang B. Two novel strategies to overcome the resistance to ALK tyrosine kinase inhibitor drugs: macrocyclic inhibitors and proteolysis-targeting chimeras. MedComm. 2021;2: 341350. https://doi.org/10.1002/mco2.42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Enago (http://www.enago.jp) for the English language review, and Prof. T. Kitamura (Institute of Medical Science, The University of Tokyo, Tokyo, Japan) for kindly providing the Plat-E cell line. The authors appreciate Dr. Fujimoto (Japan Biological Informatics Consortium [JBIC], Tokyo, Japan) and laboratory members for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Semba.

Ethics declarations

Funding

This study was partly supported by the Fukushima Translational Research Project program.

Conflict of interest

Yuta Doi, Hiroaki Tagaya, Ayaka Noge, and Kentaro Semba declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The datasets generated during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Author contributions

KS conceived and designed this study. YD, HT, and AN performed the experiments and analyzed the data. YD and KS interpreted the data and wrote the manuscript. All authors reviewed and edited the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1312 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doi, Y., Tagaya, H., Noge, A. et al. Prediction of Resistance Mutations Against Upcoming Anaplastic Lymphoma Kinase Inhibitors. Targ Oncol 17, 695–707 (2022). https://doi.org/10.1007/s11523-022-00919-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-022-00919-5

Navigation