Skip to main content
Log in

Assessment of methodologies to calculate intraventricular pressure differences in computational models and patients

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Intraventricular pressure differences (IVPDs) govern left ventricular (LV) efficient filling and are a significant determinant of LV diastolic function. Our primary aim is to assess the performance of available methods (color M-mode (CMM) and 1D/2D MRI-based methods) to determine IVPDs from intracardiac flow measurements. Performance of three methods to calculate IVPDs was first investigated via an LV computational fluid dynamics (CFD) model. CFD velocity data were derived along a modifiable scan line, mimicking ultrasound/MRI acquisition of 1D (IVPDCMM/IVPD1D MRI) and 2D (IVPD2D MRI) velocity-based IVPD information. CFD pressure data (IVPDCFD) was used as a ground truth. Methods were also compared in a small cohort (n = 13) of patients with heart failure with preserved ejection fraction (HFpEF). In silico data showed a better performance of the IVPD2D MRI approach: RMSE values for a well-aligned scan line were 0.2550 mmHg (IVPD1D MRI), 0.0798 mmHg (IVPD2D MRI), and 0.2633 mmHg (IVPDCMM). In vivo data exhibited moderate correlation between techniques. Considerable differences found may be attributable to different timing of measurements and/or integration path. CFD modeling demonstrated an advantage using 2D velocity information to compute IVPDs, and therefore, a 2D MRI-based method should be favored. However, further studies are needed to support the clinical significance of MRI-based computation of IVPDs over CMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alter P, Koczulla AR, Nell C, Figiel JH, Vogelmeier CF, Rominger MB (2016) Wall stress determines systolic and diastolic function—characteristics of heart failure. Int J Cardiol 202:685–693. doi:10.1016/j.ijcard.2015.09.032

    Article  PubMed  Google Scholar 

  2. Annerel S, Degroote J, Claessens T, Segers P, Verdonck P, Vierendeels J (2012) The upstream boundary condition influences the leaflet opening dynamics in the numerical FSI simulation of an aortic BMHV. Int J Numer Methods Biomed Eng 28(6–7):745–760. doi:10.1002/cnm.2470

    Article  Google Scholar 

  3. Baccani B, Domenichini F, Pedrizzetti G, Tonti G (2002) Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J Biomech 35(5):665–671. doi:10.1016/S0021-9290(02)00005-2

    Article  PubMed  Google Scholar 

  4. Bermejo J, Antoranz JC, Yotti R, Moreno M, García-Fernández MA (2001) Spatio-temporal mapping of intracardiac pressure gradients. A solution to Euler’s equation from digital postprocessing of color Doppler M-mode echocardiograms. Ultrasound Med Biol 27(5):621–630. doi:10.1016/S0301-5629(01)00349-0

    Article  CAS  PubMed  Google Scholar 

  5. Boogers MJ, van Werkhoven JM, Schuijf JD, Delgado V, El-Naggar HM, Boersma E, Nucifora G, van der Geest RJ, Paelinck BP, Kroft LJ, Reiber JH, de Roos A, Bax JJ, Lamb HJ (2011) Feasibility of diastolic function assessment with cardiac CT: feasibility study in comparison with tissue Doppler imaging. JACC Cardiovasc Imaging 4(3):246–256. doi:10.1016/j.jcmg.2010.11.017

    Article  PubMed  Google Scholar 

  6. Ebbers T, Farneback G (2009) Improving computation of cardiovascular relative pressure fields from velocity MRI. J Magn Reson Imaging 30(1):54–61. doi:10.1002/jmri.21775

    Article  PubMed  Google Scholar 

  7. Firstenberg MS, Vandervoort PM, Greenberg NL, Smedira NG, McCarthy PM, Garcia MJ, Thomas JD (2000) Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling. J Am Coll Cardiol 36(6):1942–1949. doi:10.1016/S0735-1097(00)00963-3

    Article  CAS  PubMed  Google Scholar 

  8. Garcia MJ, Thomas JD, Klein AL (1998) New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol 32(4):865–875. doi:10.1016/S0735-1097(98)00345-3

    Article  CAS  PubMed  Google Scholar 

  9. Gardner BI, Bingham SE, Allen MR, Blatter DD, Anderson JL (2009) Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc Ultrasound 7:38. doi:10.1186/1476-7120-7-38

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gillebert TC, De Buyzere ML (2012) HFpEF, diastolic suction, and exercise. JACC Cardiovasc Imaging 5(9):871–873. doi:10.1016/j.jcmg.2012.07.004

    Article  PubMed  Google Scholar 

  11. Greenberg NL, Vandervoort PM, Firstenberg MS, Garcia MJ, Thomas JD (2001) Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am J Physiol Heart Circ Physiol 280(6):H2507–H2515

    Article  CAS  PubMed  Google Scholar 

  12. Greenberg NL, Vandervoort PM, Thomas JD (1996) Instantaneous diastolic transmitral pressure differences from color Doppler M mode echocardiography. Am J Phys 271(4 Pt 2):H1267–H1276

    CAS  Google Scholar 

  13. Hartiala JJ, Mostbeck GH, Foster E, Fujita N, Dulce MC, Chazouilleres AF, Higgins CB (1993) Velocity-encoded cine MRI in the evaluation of left ventricular diastolic function: measurement of mitral valve and pulmonary vein flow velocities and flow volume across the mitral valve. Am Heart J 125(4):1054–1066

    Article  CAS  PubMed  Google Scholar 

  14. Krishnamurthy R, Cheong B, Muthupillai R (2014) Tools for cardiovascular magnetic resonance imaging. Cardiovasc Diagn Ther 4(2):104–125. doi:10.3978/j.issn.2223-3652.2014.03.06

    PubMed  PubMed Central  Google Scholar 

  15. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22(2):107–133. doi:10.1016/j.echo.2008.11.023

    Article  PubMed  Google Scholar 

  16. Nakamura M, Wada S, Mikami T, Kitabatake A, Karino T (2003) Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color M-mode Doppler echocardiograms. Biomech Model Mechan 2(2):59–72. doi:10.1007/s10237-003-0028-1

    Article  CAS  Google Scholar 

  17. Oh JK, Park SJ, Nagueh SF (2011) Established and novel clinical applications of diastolic function assessment by echocardiography. Circ Cardiovasc Imaging 4(4):444–455. doi:10.1161/CIRCIMAGING.110.961623

    Article  PubMed  Google Scholar 

  18. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102(15):1788–1794

    Article  CAS  PubMed  Google Scholar 

  19. Oshinski JN, Parks WJ, Markou CP, Bergman HL, Larson BE, Ku DN, Mukundan S Jr, Pettigrew RI (1996) Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol 28(7):1818–1826. doi:10.1016/S0735-1097(96)00395-6

    Article  CAS  PubMed  Google Scholar 

  20. Pedrizzetti G, Domenichini F (2015) Left ventricular fluid mechanics: the long way from theoretical models to clinical applications. Ann Biomed Eng 43(1):26–40. doi:10.1007/s10439-014-1101-x

    Article  PubMed  Google Scholar 

  21. Pedrizzetti G, Martiniello AR, Bianchi V, D’Onofrio A, Caso P, Tonti G (2015) Cardiac fluid dynamics anticipates heart adaptation. J Biomech 48(2):388–391. doi:10.1016/j.jbiomech.2014.11.049

    Article  PubMed  Google Scholar 

  22. Prakken NH, Teske AJ, Cramer MJ, Mosterd A, Bosker AC, Mali WP, Doevendans PA, Velthuis BK (2012) Head-to-head comparison between echocardiography and cardiac MRI in the evaluation of the athlete’s heart. Br J Sports Med 46(5):348–354. doi:10.1136/bjsm.2010.077669

    Article  PubMed  Google Scholar 

  23. Rojo-Alvarez JL, Bermejo J, Rodriguez-Gonzalez AB, Martinez-Fernandez A, Yotti R, Garcia-Fernandez MA, Carlos Antoranz J (2007) Impact of image spatial, temporal, and velocity resolutions on cardiovascular indices derived from color-Doppler echocardiography. Med Image Anal 11(6):513–525. doi:10.1016/j.media.2007.04.004

    Article  PubMed  Google Scholar 

  24. Rovner A, Smith R, Greenberg NL, Tuzcu EM, Smedira N, Lever HM, Thomas JD, Garcia MJ (2003) Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction. Am J Physiol Heart Circ Physiol 285(6):H2492–H2499. doi:10.1152/ajpheart.00265.2003

    Article  CAS  PubMed  Google Scholar 

  25. Seo JH, Vedula V, Abraham T, Mittal R (2013) Multiphysics computational models for cardiac flow and virtual cardiography. Int J Numer Method Biomed Eng 29(8):850–869. doi:10.1002/cnm.2556

    Article  PubMed  Google Scholar 

  26. Stewart KC, Kumar R, Charonko JJ, Ohara T, Vlachos PP, Little WC (2011) Evaluation of LV diastolic function from color M-mode echocardiography. JACC Cardiovasc Imaging 4(1):37–46. doi:10.1016/j.jcmg.2010.09.020

    Article  PubMed  Google Scholar 

  27. Thomas JD, Popovic ZB (2005) Intraventricular pressure differences: a new window into cardiac function. Circulation 112(12):1684–1686. doi:10.1161/CIRCULATIONAHA.105.566463

    Article  PubMed  Google Scholar 

  28. Thompson RB, McVeigh ER (2003) Fast measurement of intracardiac pressure differences with 2D breath-hold phase-contrast MRI. Magn Reson Med 49(6):1056–1066. doi:10.1002/mrm.10486

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tyszka JM, Laidlaw DH, Asa JW, Silverman JM (2000) Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging 12(2):321–329. doi:10.1002/1522-2586(200008)12:2<321::AID-JMRI15>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  30. van Oudheusden BW (2013) PIV-based pressure measurement. Meas Sci Technol. 24(3). doi: 10.1088/0957-0233/24/3/032001

  31. Vlachos PP, Niebel CL, Chakraborty S, Pu M, Little WC (2014) Calculating intraventricular pressure difference using a multi-beat spatiotemporal reconstruction of color M-mode echocardiography. Ann Biomed Eng 42(12):2466–2479. doi:10.1007/s10439-014-1122-5

    Article  PubMed  Google Scholar 

  32. Yotti R, Bermejo J, Antoranz JC, Desco MM, Cortina C, Rojo-Alvarez JL, Allue C, Martin L, Moreno M, Serrano JA, Munoz R, Garcia-Fernandez MA (2005) A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112(19):2921–2929. doi:10.1161/CIRCULATIONAHA.105.561340

    PubMed  Google Scholar 

  33. Yotti R, Bermejo J, Desco MM, Antoranz JC, Rojo-Alvarez JL, Cortina C, Allue C, Rodriguez-Abella H, Moreno M, Garcia-Fernandez MA (2005) Doppler-derived ejection intraventricular pressure gradients provide a reliable assessment of left ventricular systolic chamber function. Circulation 112(12):1771–1779. doi:10.1161/Circulationaha.104.485128

    Article  PubMed  Google Scholar 

  34. Zheng X, Seo JH, Vedula V, Abraham T, Mittal R (2012) Computational modeling and analysis of intracardiac flows in simple models of the left ventricle. Eur J Mech B-Fluid 35:31–39. doi:10.1016/j.euromechflu.2012.03.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Londono-Hoyos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londono-Hoyos, F.J., Swillens, A., Van Cauwenberge, J. et al. Assessment of methodologies to calculate intraventricular pressure differences in computational models and patients. Med Biol Eng Comput 56, 469–481 (2018). https://doi.org/10.1007/s11517-017-1704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1704-0

Keywords

Navigation