Skip to main content

Advertisement

Log in

Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. http://health99.hpa.gov.tw/Article/ArticleDetail.aspx?TopIcNo=846&DS=1-life

  2. Heelan RT, Flehinger BJ, Melamed MR, Zaman MB, Perchick WB, Caravelli JF, Martini N (1984) Non-small-cell lung cancer: results of the New York screening program. Radiology 151(2):289–293

    Article  CAS  PubMed  Google Scholar 

  3. Sobue T, Suzuki T, Matsuda M, Kuroishi T, Ikeda S, Naruke T (1992) Survival for clinical stage I lung cancer not surgically treated. Comparison between screen-detected and symptom-detected cases. The Japanese Lung Cancer Screening Research Group. Cancer 69(3):685–692

    Article  CAS  PubMed  Google Scholar 

  4. Flehinger BJ, Kimmel M, Melamed MR (1992) The effect of surgical treatment on survival from early lung cancer. Implications for screening. Chest 101(4):1013–1018

    Article  CAS  PubMed  Google Scholar 

  5. Quekel L, Kessels A, Goei R, Engelshoven JV (1999) Miss rate of lung cancer on the chest radiograph in clinical practice. Chest 115(3):720–724

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T, Xu X-W, MacMahon H, Metz C, Doi K (1996) Effect of a computer-aided diagnosis scheme on radiologists’ performance in detection of lung nodules on radiographs. Radiology 199:843–848

    Article  CAS  PubMed  Google Scholar 

  7. Armato SG, Giger ML, MacMahon H (1998) Automated lung segmentation in digitized postero-anterior chest radiographs. Acad Radiol 4:245–255

    Article  Google Scholar 

  8. Tsujii O, Freeman MT, Mun SK (1999) Lung contour detection in chest radiographs using 1-D convolution neural networks. J Electron Imaging 8(1):46–53

    Article  Google Scholar 

  9. Ginneken BV, Romeny BTH (2000) Automatic segmentation of lung fields in chest radiographs. Med Phys 27(10):2445–2455

    Article  PubMed  Google Scholar 

  10. Shi Y, Qi F, Xue Z, Chen L, Ito K, Matsuo H, Shen D (2008) Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Trans Med Imaging 27(4):481–494

    Article  CAS  PubMed  Google Scholar 

  11. van Ginneken B, Stegmann MB, Loog M (2006) Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. J Med Image Anal 10:19–40

    Article  Google Scholar 

  12. Wu CC, Lee WL, Chen YC, Hsieh KS (2013) Evolution-based hierarchical feature fusion for ultrasonic liver tissue characterization. IEEE J Biomed Health Inform 17(5):967–976

    Article  Google Scholar 

  13. Lee WL (2013) An ensemble-based data fusion approach for characterizing ultrasonic liver tissue. Appl Soft Comput 13:3683–3692

    Article  Google Scholar 

  14. Wu CC, Lee WL, Chen YC, Lai CH, Hsieh KS (2012) Ultrasonic liver tissue characterization by feature fusion. Expert Syst Appl 39:9389–9397

    Article  Google Scholar 

  15. Lee WL (2011) Ultrasonic liver tissue characterization by multiresolution feature vector and an ensemble of classifiers. Int J Innov Comput Inf Control 7(11):6541–6558

    Google Scholar 

  16. Lee WL, Hsieh KS (2010) A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images. Sig Process 9(6):1894–1904

    Article  Google Scholar 

  17. Lee WL, Chen YC, Chen YC, Hsieh KS (2005) Unsupervised segmentation of ultrasonic liver images by multiresolution fractal feature Vector. Inf Sci 175:177–199

    Article  Google Scholar 

  18. Lee WL, Chen YC, Hsieh KS (2003) Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans Med Imaging 22(3):382–392

    Article  PubMed  Google Scholar 

  19. Mandelbrot BB (1982) Fractal geometry of nature. Freeman Press, San Francisco

    Google Scholar 

  20. Kasparis T, Charalampidis D, Georgiopoulos M, Rolland J (2001) Segmentation of textured images based on fractals and image. Pattern Recogn 34:1963–1973

    Article  Google Scholar 

  21. Kass M, Witkin A, Terzopoulos D (1987) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  22. Cohen LD (1991) On active contour models and balloons. CVGIP Imaging Underst 53(2):211–218

    Article  Google Scholar 

  23. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  CAS  PubMed  Google Scholar 

  24. Ferrari RJ, Frere AF, Rangayyan RM, Desautels JEL, Borges RA (2004) Identification of the breast boundary in mammograms using active contour models. Med Biol Eng Comput 42:201–208

    Article  CAS  PubMed  Google Scholar 

  25. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45:35–49

    Article  CAS  PubMed  Google Scholar 

  26. Liu H-T, Sheu TWH, Chang H-H (2013) Automatic segmentation of brain MR images using an adaptive balloon snake model with fuzzy classification. Med Biol Eng Comput 51:1091–1104

    Article  PubMed  Google Scholar 

  27. Caselles V, Catte F, Coll T, Dibos F (1993) A geometric model for active contours. Numer Math 66:1–31

    Article  Google Scholar 

  28. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79

    Article  Google Scholar 

  29. Siddiqi K, Lauzi`ere YB, Tannenbaum A, Zucker SW (1998) Area and length minimizing flows for shape segmentation. IEEE Trans Imaging Process 7:433–443

    Article  CAS  Google Scholar 

  30. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  Google Scholar 

  31. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  32. Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 10(2):3243–3254

    Google Scholar 

  33. Zhang S, Zhan Y, Dewan M, Huang J, Metaxas D, Zhou X (2012) Towards robust and effective shape modeling: sparse shape composition. Med Image Anal 16(1):265–277

    Article  PubMed  Google Scholar 

  34. Zhang S, Zhan Y, Metaxas D (2012) Deformable segmentation via sparse representation and dictionary learning. Med Image Anal 16(7):1385–1396

    Article  PubMed  Google Scholar 

  35. Shi Y, Shen D (2008) Hierarchical shape statistical model for segmentation of lung fields in chest radiographs. Med Image Comput Comput Assist Interv 11:417–424

    PubMed  Google Scholar 

  36. Wu J, An G, Ruan Q (2009) Independent gabor analysis of discriminant features fusion for face recognition. IEEE Signal Process Lett 16(2):97–100

    Article  CAS  Google Scholar 

  37. Ascensi G, Bruna J (2009) Model space results for the Gabor and Wavelet transforms. IEEE Trans Inf Theory 55(5):2250–2259

    Article  Google Scholar 

  38. Pentland AP (1984) Fractal based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6:661–674

    Article  CAS  PubMed  Google Scholar 

  39. Bezdek JC, Hall LO, Clarke LP (1993) Review of MR image segmentation techniques using pattern recognition. Med Phys 20:1033–1048

    Article  CAS  PubMed  Google Scholar 

  40. Shamsi H, YucelOzbek I (2013) A robust method for online heart sound localization in respiratory sound based on temporal fuzzy c-means. Med Biol Eng Comput 51:1091–1104

    Article  Google Scholar 

  41. Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cyber Part B 55(5):301–315

    Article  Google Scholar 

  42. Kang HK, Manjinath BS, Kim J, Ro YM, Kim M (2001) MPEG-7 Homogeneous Texture Descriptor. ETRI J 23(2):41–51

    Article  Google Scholar 

  43. Hammermeister KE, Chikos PM, Fisher L, Dodge HT (1979) Relationship of cardiothoracic ratio and plain film heart volume to late survival. Circulation 59:89–95

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall Inc, New Jersey, p 675

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Council of Taiwan under Contract No. 99-2221-E-130-014 and did not involve human subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Li Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, WL., Chang, K. & Hsieh, KS. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models. Med Biol Eng Comput 54, 1409–1422 (2016). https://doi.org/10.1007/s11517-015-1412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1412-6

Keywords

Navigation