Skip to main content
Log in

Synthetic dataset generation for the analysis and the evaluation of image-based hemodynamics of the human aorta

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Here, we consider the issue of generating a suitable controlled environment for the evaluation of phase contrast (PC) MRI measurements. The computational framework, tailored to build synthetic datasets, is based on a two-step approach, i.e., define and implement (1) an accurate CFD model and (2) an image generator able to mime the overall outcomes of a PC MRI acquisition starting from datasets retrieved by the computational model. About 20 different datasets were built by changing relevant image parameters (pixel size, slice thickness, time frames per cardiac cycle). Focusing our attention on the thoracic aorta, synthetic images were processed in order to: (1) verify to which extent the fluid dynamics into the aortic arch is influenced by the image parameters; (2) establish the effect of spatial and temporal interpolation. Our study demonstrates that the integral scale of the aortic bulk flow could be described satisfactorily even when using images which are nowadays acquirable with MRI scanners. However, attention must be paid to near-wall velocities that can be affected by large inaccuracy. In detail, in bulk flow regions error values are well bounded (below 5% for most of the analyzed resolutions), while errors greater than 100% are systematically present at the vessel’s wall. Moreover, also the data interpolation process can be responsible for large inaccuracies in new data generation, due to the inherent complexity of the flow field in some connected regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bakker CJG, Hoogeveen RM, Viergever MA (1999) Construction of a protocol for measuring blood flow by two-dimensional phase-contrast MRA. J Magn Reson Imaging 9:119–127

    Article  PubMed  CAS  Google Scholar 

  2. Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier Academic Press, USA

    Google Scholar 

  3. Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39:300–308

    Article  PubMed  CAS  Google Scholar 

  4. Bogren HG, Buonocore MH, Valente RJ (2004) Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J Magn Reson Imaging 19:417–427

    Article  PubMed  Google Scholar 

  5. Dean R (1928) Fluid motion in a curved channel. Proc Roy Soc London A 121:402–420

    Article  Google Scholar 

  6. Frydrychowicz A, Stalder AF, Russe MF, Bock J, Bauer S, Harloff A, Berger A, Langer M, Hennig J, Markl M (2009) Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J Magn Reson Imaging 30:77–84

    Article  PubMed  Google Scholar 

  7. Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN (2005) Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 15:2172–2184

    Article  PubMed  Google Scholar 

  8. Gallo D, De Santis G, Negri F, Tresoldi D, Ponzini R, Massai D, Deriu MA, Segers P, Verhegghe B, Rizzo G, Morbiducci U (2012) On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta. Implications for indicators of abnormal flow. Ann Biomed Eng. doi:10.1007/s10439-011-0431-1

  9. Grigioni M, Daniele C, Morbiducci U, Del Gaudio C, D’Avenio G, Balducci A (2005) A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J Biomech 38:1375–1386

    Article  PubMed  Google Scholar 

  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging. Physical principles and sequence design. Wiley-Liss (John Wiley & Sons), New York

    Google Scholar 

  11. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando

    Google Scholar 

  12. Hope TA, Markl M, Wigstrom L, Alley MT, Miller DC, Herfkens RJ (2007) Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J Magn Reson Imaging 26:1471–1479

    Article  PubMed  Google Scholar 

  13. Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247

    PubMed  CAS  Google Scholar 

  14. Lorthois S, Stroud-Rossman J, Berger S, Jou LD, Saloner D (2005) Numerical simulation of magnetic resonance angiographies of an anatomically realistic stenotic carotid bifurcation. Ann Biomed Eng 33:270–283

    Article  PubMed  Google Scholar 

  15. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

    PubMed  Google Scholar 

  16. Markl M, Draney MT, Miller DC, Levin JM, Williamson EE, Pelc NJ, Liang DH, Herfkens RJ (2005) Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J Thorac Cardiovasc Surg 130:456–463

    Article  PubMed  Google Scholar 

  17. Morbiducci U, Lemma M, Ponzini R, Boi A, Bondavalli L, Antona C, Montevecchi FM, Redaelli A (2007) Does flow dynamics of the magnetic vascular coupling for distal anastomosis in coronary artery bypass grafting contribute to the risk of graft failure? Int J Artif Organs 30:628–639

    PubMed  CAS  Google Scholar 

  18. Morbiducci U, Ponzini R, Grigioni M, Redaelli A (2007) Helical flow as fluid dynamic signature for atherogenesis in aortocoronary bypass. A numeric study. J Biomech 40:519–534

    Article  PubMed  Google Scholar 

  19. Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, Del Maschio A, Montevecchi FM, Redaelli A (2009) In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng 37:516–531

    Article  PubMed  Google Scholar 

  20. Morbiducci U, Gallo D, Massai D, Consolo F, Ponzini R, Antiga L, Bignardi C, Deriu MA, Redaelli A (2010) Outflow conditions for image-based haemodynamic models of the carotid bifurcation. Implications for indicators of abnormal flow. J Biomech Eng 132:091005

    Article  PubMed  Google Scholar 

  21. Morbiducci U, Gallo D, Ponzini R, Massai D, Antiga L, Montevecchi FM, Redaelli A (2010) Quantitative analysis of bulk flow in image-based haemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann Biomed Eng 38:3688–3705

    Article  PubMed  Google Scholar 

  22. Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi FM, Redaelli A (2011) Mechanistic insight into the physiological relevance of helical blood flow in the human aorta. An in vivo study. Biomech Model Mechanobiol 10:339–355

    Article  PubMed  Google Scholar 

  23. Morbiducci U, Gallo D, Massai D, Ponzini R, Deriu MA, Antiga L, Redaelli A, Montevecchi FM (2011) On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J Biomech 44:2427–2438

    Article  PubMed  Google Scholar 

  24. Parviz M (2001) Fundamentals of engineering numerical analysis. Cambridge university press, Cambridge

    Google Scholar 

  25. Petersson S, Dyverfeldt P, Gardhagen R, Karlsson M, Ebbers T (2010) Simulation of phase contrast MRI of turbulent flow. Magn Reson Med 64:1039–1046

    Article  PubMed  Google Scholar 

  26. Polzin JA, Alley MT, Korosec FR, Grist TM, Wang Y, Mistretta CA (1995) A complex-difference phase-contrast technique for measurement of volume flow rates. J Magn Reson Imaging 5:129–137

    Article  PubMed  CAS  Google Scholar 

  27. Ponzini R, Lemma M, Morbiducci U, Montevecchi FM, Redaelli A (2008) Doppler derived quantitative flow estimate in coronary artery bypass graft: a computational multiscale model for the evaluation of the current clinical procedure. Med Eng Phys 30:809–816

    Article  PubMed  Google Scholar 

  28. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60:1218–1231

    Article  PubMed  CAS  Google Scholar 

  29. Swillens A, De Schryver T, Lavstakken L, Torp H, Segers P (2009) Assessment of numerical simulation strategies for ultrasonic color blood flow imaging, based on a computer and experimental model of the carotid artery. Ann Biomed Eng 37:2188–2199

    Article  PubMed  Google Scholar 

  30. Taylor CA, Cheng CP, Espinosa LA, Tang BT, Parker D, Herfkens RJ (2002) In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann Biomed Eng 30:402–408

    Article  PubMed  Google Scholar 

  31. Thomas JB, Milner JS, Rutt BK, Steinman DA (2003) Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann Biomed Eng 31:132–141

    Article  PubMed  Google Scholar 

  32. Unser M, Aldroubi A, Eden M (1993) B-spline signal processing. Part I. Theory. IEEE Trans Signal Process 41:821–833

    Article  Google Scholar 

  33. Unser M, Aldroubi A, Eden M (1993) B-spline signal processing. Part II. Efficient design and applications. IEEE Trans Signal Process 41:834–848

    Article  Google Scholar 

  34. Unser M (1999) Splines: a perfect fit for signal and image processing. IEEE Signal Process Magn 16:22

    Article  Google Scholar 

  35. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the CILEA HPC Consortium, which provided CPU time, data storage facilities and scientific visualization consulting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Morbiducci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 588 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morbiducci, U., Ponzini, R., Rizzo, G. et al. Synthetic dataset generation for the analysis and the evaluation of image-based hemodynamics of the human aorta. Med Biol Eng Comput 50, 145–154 (2012). https://doi.org/10.1007/s11517-011-0854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0854-8

Keywords

Navigation