Skip to main content
Log in

Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

  • Mini-Review
  • Published:
Frontiers in Biology

Abstract

Background

The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research.

Methods

A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section.

Results

On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage.

Conclusions

Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C, Lonetti G, Silingardi D, Vyssotski A L, Farley D, Ciani E, Pizzorusso T, Giustetto M, Gross C T (2014). Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS One, 9(5): e91613–e12

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer H L (2006). CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet, 43(9): 729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahi-Buisson N, Nectoux J, Rosas-Vargas H, Milh M, Boddaert N, Girard B, Cances C, Ville D, Afenjar A, Rio M, Heron D, N’Guyen Morel M A, Arzimanoglou A, Philippe C, Jonveaux P, Chelly J, Bienvenu T (2008). Key clinical features to identify girls with CDKL5 mutations. Brain, 131(10): 2647–2661

    Article  PubMed  Google Scholar 

  • Bahi-Buisson N, Villeneuve N, Caietta E, Jacquette A, Maurey H, Matthijs G, Van Esch H, Delahaye A, Moncla A, Milh M, Zufferey F, Diebold B, Bienvenu T (2012). Recurrent mutations in the CDKL5 gene: Genotype-phenotype relationships. Am J Med Genet, 158A(7): 1612–1619

    Article  PubMed  Google Scholar 

  • Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: From clinic to neurobiology. Neuron, 56(3): 422–437

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Zhu Y C, Yu J, Miao S, Zheng J, Xu L, Zhou Y, Li D, Zhang C, Tao J, Xiong Z Q (2010). CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci, 30(38): 12777–12786

    Article  CAS  PubMed  Google Scholar 

  • Crino P B (2011). mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends Mol Med, 17(12): 734–742

    Article  CAS  PubMed  Google Scholar 

  • Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E, Michele Ratto G, Amendola E, Gross C T, Giustetto M, Pizzorusso T (2016). Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol Psychiatry, 80(4): 302–311

    Article  CAS  PubMed  Google Scholar 

  • Diebold B, Delépine C, Gataullina S, Delahaye A, Nectoux J, Bienvenu T (2014). Mutations in the C-terminus of CDKL5: proceed with caution. Eur J Hum Genet, 22(2): 270–272

    Article  CAS  PubMed  Google Scholar 

  • Fehr S, Downs J, Ho G, de Klerk N, Forbes D, Christodoulou J, Williams S, Leonard H (2016). Functional abilities in children and adults with the CDKL5 disorder. Am J Med Genet, 170(11): 1–10

    Article  Google Scholar 

  • Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, Vecchi M, Ho G, Polli R, Psoni S, Bao X, de Klerk N, Leonard H, Christodoulou J (2012). The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet, 21: 266–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs C, Rimondini R, Viggiano R, Trazzi S, De Franceschi M, Bartesaghi R, Ciani E (2015). Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Neurobiol Dis, 82: 298–310

    Article  CAS  PubMed  Google Scholar 

  • Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calzà L, Bartesaghi R, Ciani E (2014). Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AK/GSK-3β signaling. Neurobiol Dis, 70: 53–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanefeld F (1985). The clinical pattern of the rett syndrome. Brain Dev, 7(3): 320–325

    Article  CAS  PubMed  Google Scholar 

  • Hector R D, Dando O, Landsberger N, Kilstrup-Nielsen C, Kind P C, Bailey ME, Cobb S R (2016). Characterisation of CDKL5 transcript isoforms in human and mouse. PLoS One. 11(6):e0157758.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer VM, Tao J, Donnelly A, Hollway G, Schwinger E, Kübart S, Menzel C, Hoeltzenbein M, Tommerup N, Eyre H, Harbord M, Haan E, Sutherland G R, Ropers H H, Gécz J (2003). Disruption of the Serine/Threonine Kinase 9 Gene Causes Severe X–Linked Infantile Spasms and Mental Retardation. Am J Hum Genet, 72(6): 1401–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameshita I, Sekiguchi M, Hamasaki D, Sugiyama Y, Hatano N, Suetake I, Tajima S, Sueyoshi N (2008). Cyclin-dependent kinaselike 5 binds and phosphorylates DNA methyltransferase 1. Biochem Biophys Res Commun, 377(4): 1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Franco B, RosnerMR (2005). CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet, 14(24): 3775–3786

    Article  CAS  PubMed  Google Scholar 

  • Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N (2005). CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet, 14(14): 1935–1946

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo M, Leuzzi V (2012). Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol, 46(1): 24–31

    Article  PubMed  Google Scholar 

  • Montini E, Andolfi G, Caruso A, Buchner G, Walpole S M, Mariani M, Consalez G, Trump D, Ballabio A, Franco B (1998). Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics, 51(3): 427–433

    Article  CAS  PubMed  Google Scholar 

  • Nawaz M S, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, Alberio T, Landsberger N, Rusconi L, Kilstrup-Nielsen C (2016). CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization. PLoS One, 11(2): e0148634

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemos C, Lambert L, Giuliano F, Doray B, Roubertie A, Goldenberg A, Delobel B, Layet V, N’guyen M A, Saunier A, Verneau F, Jonveaux P, Philippe C (2009). Mutational spectrum of CDKL5in early-onset encephalopathies: a study of a large collection of French patients and review of the literature. Clin Genet, 76(4): 357–371

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi S, Kilstrup-Nielsen C, Bienvenu T, Jacquette A, Landsberger N, Broccoli V (2009). CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery. Hum Mol Genet, 18(23): 4590–4602

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D, Sessa A, Magagnotti C, Bachi A, Giarda E, Verpelli C, Kilstrup-Nielsen C, Sala C, Kalscheuer V M, Broccoli V (2012). CDKL5 ensures excitatory synapse stability by reinforcing NGL-1–PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol, 14(9): 911–923

    Article  CAS  PubMed  Google Scholar 

  • Rusconi L, Kilstrup-Nielsen C, Landsberger N (2011). Extrasynaptic Nmethyl- D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation. J Biol Chem, 286(42): 36550–36558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusconi L, Salvatoni L, Giudici L, Bertani I, Kilstrup-Nielsen C, Broccoli V, Landsberger N (2008). CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem, 283(44): 30101–30111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I (2013). Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys, 535(2): 257–267

    Article  CAS  PubMed  Google Scholar 

  • Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M, Sperner J, Fryns J P, Schwinger E, Gécz J, Ropers H H, Kalscheuer V M (2004). Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet, 75(6): 1149–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang I T, Allen M, Goffin D, Zhu X, Fairless A H, Brodkin E S, Siegel S J, Marsh E D, Blendy J A, Zhou Z (2012). Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci USA, 109(52): 21516–21521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaving L S, Christodoulou J, Williamson S L, Friend K L, McKenzie O L D, Archer H, Evans J, Clarke A, Pelka G J, Tam P P L, Watson C, Lahooti H, Ellaway C J, Bennetts B, Leonard H, Gécz J (2004). Mutations of CDKL5 Cause a Severe Neurodevelopmental Disorder with Infantile Spasms and Mental Retardation. Am J Hum Genet, 75(6): 1079–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y C, Li D, Wang L, Lu B, Zheng J, Zhao S L, Zeng R, Xiong Z Q (2013). Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci USA, 110(22): 9118–9123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Sheng Tang for his assistance in organizing the references and Judy I-Ting Wang in formulating the review plan. We also acknowledge the sponsorship from the Sino-US Health Science Initiative (A.Z. and S. H.). This work is partially supported by the International Foundation for CDKL5 Research and the Loulou Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolan Joe Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Han, S. & Zhou, Z.J. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder. Front. Biol. 12, 1–6 (2017). https://doi.org/10.1007/s11515-016-1438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1438-7

Keywords

Navigation