Skip to main content
Log in

Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

Epigenomic reconfiguration, including changes in DNA methylation and histone modifications, is crucial for the differentiation of embryonic stem cells (ESCs) into somatic cells. However, the extent to which the epigenome is reconfigured and the interplay between components of the epigenome during cellular differentiation remain poorly defined.

Methods

We systematically analyzed and compared DNA methylation, various histone modification, and transcriptome profiles in ESCs with those of two distinct types of somatic cells from human and mouse.

Results

We found that global DNA methylation levels are lower in somatic cells compared to ESCs in both species. We also found that 80% of regions with histone modification occupancy differ between human ESCs and the two human somatic cell types. Approximately 70% of the reconfigurations in DNA methylation and histone modifications are locus- and cell typespecific. Intriguingly, the loss of DNA methylation is accompanied by the gain of different histone modifications in a locus- and cell type-specific manner. Further examination of transcriptional changes associated with epigenetic reconfiguration at promoter regions revealed an epigenetic switching for gene regulation—a transition from stable gene silencing mediated by DNA methylation in ESCs to flexible gene repression facilitated by repressive histone modifications in somatic cells.

Conclusions

Our findings demonstrate that the epigenome is reconfigured in a locus- and cell type-specific manner and epigenetic switching is common during cellular differentiation in both human and mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532–538

    Article  CAS  PubMed  Google Scholar 

  • Ball M P, Li J B, Gao Y, Lee J H, LeProust E M, Park I H, Xie B, Daley G Q, Church G M (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 27(4): 361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Shushan E, Pikarsky E, Klar A, Bergman Y (1993). Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol Cell Biol, 13(2): 891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate- a practical and powerful approach to multiple testing. J Roy Stat Soc B Met, 57: 289–300

    Google Scholar 

  • Berger S L (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143): 407–412

    Article  CAS  PubMed  Google Scholar 

  • Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125 (2): 315–326

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21

    Article  CAS  PubMed  Google Scholar 

  • Deb-Rinker P, Ly D, Jezierski A, Sikorska M, Walker P R (2005). Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem, 280(8): 6257–6260

    Article  CAS  PubMed  Google Scholar 

  • Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15–21

    Article  CAS  PubMed  Google Scholar 

  • Gifford C A, Ziller M J, Gu H, Trapnell C, Donaghey J, Tsankov A, Shalek A K, Kelley D R, Shishkin A A, Issner R, Zhang X, Coyne M, Fostel J L, Holmes L, Meldrim J, Guttman M, Epstein C, Park H, Kohlbacher O, Rinn J, Gnirke A, Lander E S, Bernstein B E, Meissner A (2013). Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell, 153(5): 1149–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins R D, Hon G C, Lee L K, Ngo Q, Lister R, Pelizzola M, Edsall L E, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson J A, Ecker J R, Ren B (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6(5): 479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz S, Benner C, Spann N, Bertolino E, Lin Y C, Laslo P, Cheng J X, Murre C, Singh H, Glass C K (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell, 38(4): 576–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hon G C, Hawkins R D, Caballero O L, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall L E, Camargo A A, Stevenson B J, Ecker J R, Bafna V, Strausberg R L, Simpson A J, Ren B (2012). Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res, 22(2): 246–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hon G C, Rajagopal N, Shen Y, McCleary D F, Yue F, Dang M D, Ren B (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet, 45(10): 1198–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13

    Article  Google Scholar 

  • Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57

    Article  CAS  Google Scholar 

  • Jackson M, Krassowska A, Gilbert N, Chevassut T, Forrester L, Ansell J, Ramsahoye B (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol, 24(20): 8862–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33(3s Suppl): 245–254

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293 (5532). 1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jones P A (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13(7): 484–492

    Article  CAS  PubMed  Google Scholar 

  • Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger F, Andrews S R (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27 (11): 1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, the 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, Ecker J R (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res, 19(6): 959–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel E A, Nery J R, Urich M, Puddifoot C A, Johnson N D, Lucero J, Huang Y, Dwork A J, Schultz M D, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu J C, Rao A, Esteller M, He C, Haghighi F G, Sejnowski T J, Behrens M M, Ecker J R (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341(6146): 1237905

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maniatis T, Reed R (2002). An extensive network of coupling among gene expression machines. Nature, 416(6880): 499–506

    Article  CAS  PubMed  Google Scholar 

  • Mann I K, Chatterjee R, Zhao J, He X, Weirauch M T, Hughes T R, Vinson C (2013). CG methylated microarrays identify a novel methylated sequence bound by the CEBPBATF4 heterodimer that is active in vivo. Genome Res, 23(6): 988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margueron R, Reinberg D (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330): 343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Métivier R, Penot G, Hübner M R, Reid G, Brand H, Kos M, Gannon F (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115(6): 751–763

    Article  PubMed  Google Scholar 

  • Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir G A, Stewart R, Thomson J A (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 1(3): 299–312

    Article  CAS  PubMed  Google Scholar 

  • Reik W (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143): 425–432

    Article  CAS  PubMed  Google Scholar 

  • Rivera C M, Ren B (2013). Mapping human epigenomes. Cell, 155(1): 39–55

    Article  CAS  PubMed  Google Scholar 

  • Robinson J T, Thorvaldsdóttir H, Winckler W, Guttman M, Lander E S, Getz G, Mesirov J P (2011). Integrative genomics viewer. Nat Biotechnol, 29(1): 24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140

    Article  CAS  PubMed  Google Scholar 

  • Smith Z D, Meissner A (2013). DNA methylation: roles in mammalian development. Nat Rev Genet, 14(3): 204–220

    Article  CAS  PubMed  Google Scholar 

  • Stadler M B, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley E J, Gaidatzis D, Tiwari V K, Schübeler D (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495

    CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorvaldsdóttir H, Robinson J T, Mesirov J P (2013). Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform, 14(2): 178–192

    Article  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsumura A, Hayakawa T, Kumaki Y, Takebayashi S, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li E, Ueda H R, Nakayama J, Okano M (2006). Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells, 11(7): 805–814

    Article  CAS  PubMed  Google Scholar 

  • Turner B M (2007). Defining an epigenetic code. Nat Cell Biol, 9(1): 2–6

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Barr C L, Kim A, Yue F, Lee A Y, Eubanks J, Dempster E L, Ren B (2012). Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148(4): 816–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Schultz M D, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker J W, Tian S, Hawkins R D, Leung D, Yang H, Wang T, Lee A Y, Swanson S A, Zhang J, Zhu Y, Kim A, Nery J R, Urich M A, Kuan S, Yen C A, Klugman S, Yu P, Suknuntha K, Propson N E, Chen H, Edsall L E, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung W Y, Chi N C, Antosiewicz-Bourget J E, Slukvin I, Stewart R, Zhang M Q, Wang W, Thomson J A, Ecker J R, Ren B (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153(5): 1134–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziller M J, Gu H, Müller F, Donaghey J, Tsai L T, Kohlbacher O, De Jager P L, Rosen E D, Bennett D A, Bernstein B E, Gnirke A, Meissner A (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature, 500(7463): 477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolan Zhou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YT., Fasolino, M. & Zhou, Z. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals. Front. Biol. 11, 311–322 (2016). https://doi.org/10.1007/s11515-016-1411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1411-5

Keywords

Navigation