Skip to main content
Log in

Real-time imaging of single synaptic vesicles in live neurons

  • Review
  • Published:
Frontiers in Biology

Abstract

Recent advances in fluorescence microscopy have provided researchers with powerful new tools to visualize cellular processes occurring in real time, giving researchers an unprecedented opportunity to address many biological questions that were previously inaccessible. With respect to neurobiology, these real-time imaging techniques have deepened our understanding of molecular and cellular processes, including the movement and dynamics of single proteins and organelles in living cells. In this review, we summarize recent advances in the field of real-time imaging of single synaptic vesicles in live neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabi A A, Tsien R W (2012). Synaptic vesicle pools and dynamics. Cold Spring HarbPerspectBiol, 4(8): a013680

    Google Scholar 

  • Alabi A A, Tsien R W (2013). Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol, 75: 393–422

    Article  CAS  PubMed  Google Scholar 

  • Andreae L C, Fredj N B, Burrone J (2012). Independent vesicle pools underlie different modes of release during neuronal development. J Neurosci, 32(5): 1867–1874

    Article  CAS  PubMed  Google Scholar 

  • Aravanis A M, Pyle J L, Tsien R W (2003). Single synaptic vesicles fusing transiently and successively without loss of identity. Nature, 423(6940): 643–647

    Article  CAS  PubMed  Google Scholar 

  • Atasoy D, Ertunc M, Moulder K L, Blackwell J, Chung C, Su J, Kavalali E T (2008). Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci, 28(40): 10151–10166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelrod D, Thompson N L, Burghardt T P (1983). Total internal inflection fluorescent microscopy. J Microsc, 129(Pt 1): 19–28

    Article  CAS  PubMed  Google Scholar 

  • Baba K, Nishida K (2012). Single-molecule tracking in living cells using single quantum dot applications. Theranostics, 2(7): 655–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaji J, Ryan T A (2007). Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A, 104(51): 20576–20581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso M M (2011). Quantum Dots in Cell Biology. J Histochem Cytochem, 59: 237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793): 1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Bianchini P, Peres C, Oneto M, Galiani S, Vicidomini G, Diaspro A (2015). STED nanoscopy: a glimpse into the future. Cell Tissue Res, 360(1): 143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum C, Meixner A J, Subramaniam V (2004). Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants. Biophys J, 87(6): 4172–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottrill M, Green M (2011). Some aspects of quantum dot toxicity. Chem Commun (Camb), 47(25): 7039–7050

    Article  CAS  Google Scholar 

  • Buxbaum A R, Yoon Y J, Singer R H, Park H Y (2015). Singlemolecule insights into mRNA dynamics in neurons. Trends Cell Biol, 25(8): 468–475

    Article  CAS  PubMed  Google Scholar 

  • Chang Y P, Pinaud F, Antelman J, Weiss S (2008). Tracking biomolecules in live cells using quantum dots. J Biophotonics, 1(4): 287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chater T E, Goda Y (2014). The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci, 8: 401

    Article  PubMed  PubMed Central  Google Scholar 

  • Chéreau R, Tønnesen J, Nägerl U V (2015). STED microscopy for nanoscale imaging in living brain slices. Methods, 88: 57–66

    Article  PubMed  CAS  Google Scholar 

  • Choquet D, Triller A (2013). The dynamic synapse. Neuron, 80(3): 691–703

    Article  CAS  PubMed  Google Scholar 

  • Chung C, Barylko B, Leitz J, Liu X, Kavalali E T (2010). Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci, 30(4): 1363–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho M, Maghelli N, Tolic-Nørrelykke I M (2013). Single-molecule imaging in vivo: the dancing building blocks of the cell. Integr Biol (Camb), 5(5): 748–758

    Article  CAS  Google Scholar 

  • Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003). Diffusion dynamics of glycine receptors revealed by singlequantum dot tracking. Science, 302(5644): 442–445

    Article  CAS  PubMed  Google Scholar 

  • Darcy K J, Staras K, Collinson L M, Goda Y (2006). Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci, 9(3): 315–321

    Article  CAS  PubMed  Google Scholar 

  • Deniz A A, Mukhopadhyay S, Lemke E A (2008). Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface, 5(18): 15–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePina A S, Wöllert T, Langford G M (2007). Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell Motil Cytoskeleton, 64(10): 739–755

    Article  CAS  PubMed  Google Scholar 

  • Dreosti E, Lagnado L (2011). Optical reporters of synaptic activity in neural circuits. Exp Physiol, 96(1): 4–12

    Article  PubMed  Google Scholar 

  • Duzdevich D, Greene E C (2013). Towards physiological complexity with in vitro single-molecule biophysics. Philos Trans R SocLond B BiolSci, 368(1611): 20120271

    Article  CAS  Google Scholar 

  • Fernandez-Alfonso T, Ryan T A (2008). A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biol, 36(1-4): 87–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Suárez M, Ting A Y (2008). Fluorescent probes for superresolution imaging in living cells. Nat Rev Mol Cell Biol, 9(12): 929–943

    Article  PubMed  CAS  Google Scholar 

  • Fioravante D, Regehr W G (2011). Short-term forms of presynaptic plasticity. Curr Opin Neurobiol, 21(2): 269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi S P, Stevens C F (2003). Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature, 423(6940): 607–613

    Article  CAS  PubMed  Google Scholar 

  • Giepmans B N, Adams S R, Ellisman M H, Tsien R Y (2006). The fluorescent toolbox for assessing protein location and function. Science, 312(5771): 217–224

    Article  CAS  PubMed  Google Scholar 

  • Groc L, Choquet D (2006). AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res, 326(2): 423–438

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Lazarenko R M, Koktysh D, Iacovitti L, Zhang Q (2015). A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses. Stem Cells Transl Med, 4(8): 887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D (2014). A starting point for fluorescencebased single-molecule measurements in biomolecular research. Molecules, 19(10): 15824–15865

    Article  PubMed  CAS  Google Scholar 

  • Haas B L, Matson J S, Di Rita V J, Biteen J S (2014). Imaging live cells at the nanometer-scale with single-molecule microscopy: obstacles and achievements in experiment optimization for microbiology. Molecules, 19(8): 12116–12149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harke B, Keller J, Ullal C K, Westphal V, Schönle A, Hell S W (2008). Resolution scaling in STED microscopy. Opt Express, 16(6): 4154–4162

    Article  PubMed  Google Scholar 

  • Hell SW, Wichmann J (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11): 780–782

    Article  CAS  PubMed  Google Scholar 

  • Herzog E, Nadrigny F, Silm K, Biesemann C, Helling I, Bersot T, Steffens H, Schwartzmann R, Nägerl U V, El Mestikawy S, Rhee J, Kirchhoff F, Brose N (2011). In vivo imaging of intersynaptic vesicle exchange using VGLUT1 Venus knock-in mice. J Neurosci, 31(43): 15544–15559

    Article  CAS  PubMed  Google Scholar 

  • Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall L F, Schmidt M M, Wittrup K D, Bawendi M G, Ting A Y (2008). Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods, 5(5): 397–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua Y, Sinha R, Martineau M, Kahms M, Klingauf J (2010). A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci, 13(12): 1451–1453

    Article  CAS  PubMed  Google Scholar 

  • Ifrim MF, Williams K R, Bassell G J (2015). Single-molecule imaging of PSD-95 mRNA translation in dendrites and its dysregulation in a mouse model of fragile X syndrome. J Neurosci, 35(18): 7116–7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn R, Fasshauer D (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature, 490(7419): 201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008).Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem, 77: 51–76

  • Kamin D, Lauterbach M A, Westphal V, Keller J, Schönle A, Hell S W, Rizzoli S O (2010). High- and low-mobility stages in the synaptic vesicle cycle. Biophys J, 99(2): 675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavalali E T (2015). The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci, 16(1): 5–16

    Article  CAS  PubMed  Google Scholar 

  • Kavalali E T, Jorgensen E M (2014). Visualizing presynaptic function. Nat Neurosci, 17(1): 10–16

    Article  CAS  PubMed  Google Scholar 

  • Kharazia V N, Weinberg R J (1997). Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. NeurosciLett, 238(1-2): 41–44

    CAS  Google Scholar 

  • Kural C, Kim H, Syed S, Goshima G, Gelfand V I, Selvin P R (2005). Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science, 308(5727): 1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Kusumi A, Tsunoyama T A, Hirosawa K M, Kasai R S, Fujiwara T K (2014). Tracking single molecules at work in living cells. Nat ChemBiol, 10(7): 524–532

    Article  CAS  Google Scholar 

  • Kwakowsky A, Potapov D, Abrahám I M (2013). Tracking of single receptor molecule mobility in neuronal membranes: a quick theoretical and practical guide. J Neuroendocrinol, 25(11): 1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Lavis L D, Raines R T (2014). Bright building blocks for chemical biology. ACS ChemBiol, 9(4): 855–866

    Article  CAS  Google Scholar 

  • Lee S, Jung K J, Jung H S, Chang S (2012). Dynamics of multiple trafficking behaviors of individual synaptic vesicles revealed by quantum-dot based presynaptic probe. PLoS One, 7(5): e38045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitz J, Kavalali E T (2011). Ca²? influx slows single synaptic vesicle endocytosis. J Neurosci, 31(45): 16318–16326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitz J, Kavalali E T (2014). Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. Elife, 3: e03658

    Article  PubMed  Google Scholar 

  • Levi V, Gratton E (2007). Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys, 48(1): 1–15

    Article  CAS  PubMed  Google Scholar 

  • Liu G (2003). Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr Opin Neurobiol, 13(3): 324–331

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Lavis L D, Betzig E (2015). Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell, 58(4): 644–659

    Article  CAS  PubMed  Google Scholar 

  • Loy K, Welzel O, Kornhuber J, Groemer T W (2014). Common strength and localization of spontaneous and evoked synaptic vesicle release sites. Mol Brain, 7: 23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P, Dubertret B (2008). Towards non-blinking colloidal quantum dots. Nat Mater, 7 (8): 659–664

    Article  CAS  PubMed  Google Scholar 

  • Makino H, Malinow R (2009). AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron, 64(3): 381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzo C, Garcia-Parajo M F (2015). A review of progress in single particle tracking: from methods to biophysical insights. Rep Prog Phys, 78(12): 124601

    Article  PubMed  Google Scholar 

  • Maschi D, Klyachko V A (2015).A nanoscale resolution view on synaptic vesicle dynamics. Synapse, 69(5): 256–267

  • Mattoussi H, Palui G, Na H B (2012). Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev, 64(2): 138–166

    Article  CAS  PubMed  Google Scholar 

  • Maysinger D, Ji J, Hutter E, Cooper E (2015). Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front Neurosci, 9: 480

    Article  PubMed  PubMed Central  Google Scholar 

  • Medintz I L, Uyeda H T, Goldman E R, Mattoussi H (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 4 (6): 435–446

    Article  CAS  PubMed  Google Scholar 

  • Michalet X, Colyer R A, Scalia G, Ingargiola A, Lin R, Millaud J E, Weiss S, Siegmund O H, Tremsin A S, Vallerga J V, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni M, Cova S (2013). Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos Trans R SocLond B Biol Sci, 368(1611): 20120035

    Article  CAS  Google Scholar 

  • Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307 (5709): 538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midorikawa M, Sakaba T (2015). Imaging exocytosis of single synaptic vesicles at a fast CNS presynaptic terminal. Neuron, 88(3): 492–498

    Article  CAS  PubMed  Google Scholar 

  • Miesenböck G, De Angelis D A, Rothman J E (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature, 394(6689): 192–195

    Article  PubMed  Google Scholar 

  • Mochida S (2011). Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity. Neurosci Res, 70 (1): 16–23

    Article  PubMed  Google Scholar 

  • Monico C, Capitanio M, Belcastro G, Vanzi F, Pavone F S (2013). Optical methods to study protein-DNA interactions in vitro and in living cells at the single-molecule level. Int J Mol Sci, 14(2): 3961–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller T, Schumann C, Kraegeloh A (2012). STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem, 13(8): 1986–2000

    Article  PubMed  CAS  Google Scholar 

  • Murthy V N, De Camilli P (2003). Cell biology of the presynaptic terminal. Annu Rev Neurosci, 26: 701–728

    Article  CAS  PubMed  Google Scholar 

  • Nan X, Sims P A, Chen P, Xie X S (2005). Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J Phys Chem B, 109(51): 24220–24224

    Article  CAS  PubMed  Google Scholar 

  • Neupane B, Ligler F S, Wang G (2014). Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J Biomed Opt, 19(8): 080901

    Article  PubMed  CAS  Google Scholar 

  • Opazo P, Sainlos M, Choquet D (2012). Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol, 22(3): 453–460

    Article  CAS  PubMed  Google Scholar 

  • Park H, Hanson G T, Duff S R, Selvin P R (2004). Nanometre localization of single ReAsH molecules. J Microsc, 216(Pt 3): 199–205

    Article  CAS  PubMed  Google Scholar 

  • Park H, Li Y, Tsien R W (2012). Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science, 335 (6074): 1362–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Toprak E, Selvin P R (2007). Single-molecule fluorescence to study molecular motors. Q Rev Biophys, 40(1): 87–111

    Article  CAS  PubMed  Google Scholar 

  • Pechstein A, Shupliakov O (2010). Taking a back seat: synaptic vesicle clustering in presynaptic terminals. Front Synaptic Neurosci, 2: 143

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng A, Rotman Z, Deng P Y, Klyachko V A (2012). Differential motion dynamics of synaptic vesicles undergoing spontaneous and activity-evoked endocytosis. Neuron, 73(6): 1108–1115

    Article  CAS  PubMed  Google Scholar 

  • Ramirez D M, Kavalali E T (2011). Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol, 21(2): 275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnayaka A, Marra V, Branco T, Staras K (2011). Extrasynaptic vesicle recycling in mature hippocampal neurons. Nat Commun, 2: 531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regehr W G (2012). Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol, 4(7): a005702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3(10): 793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaba T (2006). Roles of the fast-releasing and the slowly releasing vesicles in synaptic transmission at the calyx of Held. J Neurosci, 26 (22): 5863–5871

    Article  CAS  PubMed  Google Scholar 

  • Sara Y, Bal M, Adachi M, Monteggia L M, Kavalali E T (2011). Usedependent AMPA receptor block reveals segregation of spontaneous and evoked glutamatergic neurotransmission. J Neurosci, 31(14): 5378–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith A M, Nie S (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res, 43(2): 190–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staras K, Branco T, Burden J J, Pozo K, Darcy K, Marra V, Ratnayaka A, Goda Y (2010). A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron, 66(1): 37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steyer J A, Almers W (2001). A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol, 2(4): 268–275

    Article  CAS  PubMed  Google Scholar 

  • Südhof T C (2004). The synaptic vesicle cycle. Annu Rev Neurosci, 27: 509–547

    Article  PubMed  CAS  Google Scholar 

  • Südhof T C (2008). Neurotransmitter release. Handb Exp Pharmacol, 184: 1–21

    Article  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke E A, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Møller S A, Rammner B, Gräter F, Hub J S, De Groot B L, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006). Molecular anatomy of a trafficking organelle. Cell, 127(4): 831–846

    Article  CAS  PubMed  Google Scholar 

  • Tardin C, Cognet L, Bats C, Lounis B, Choquet D (2003). Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J, 22(18): 4656–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatavarty V, Ifrim MF, Levin M, Korza G, Barbarese E, Yu J, Carson J H (2012). Single-molecule imaging of translational output from individual RNA granules in neurons. MolBiol Cell, 23(5): 918–929

    CAS  Google Scholar 

  • Thompson R E, Larson D R, Webb W W (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J, 82 (5): 2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triller A, Choquet D (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59(3): 359–374

    Article  CAS  PubMed  Google Scholar 

  • Warshaw D M, Kennedy G G, Work S S, Krementsova E B, Beck S, Trybus K M (2005). Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J, 88(5): L30–L32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal V, Rizzoli S O, Lauterbach M A, Kamin D, Jahn R, Hell S W (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320(5873): 246–249

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm B G, Groemer T W, Rizzoli S O (2010). The same synaptic vesicles drive active and spontaneous release. Nat Neurosci, 13(12): 1454–1456

    Article  CAS  PubMed  Google Scholar 

  • Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W (2006). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440(7086): 935–939

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yeh F L, Mao F, Chapman E R (2009). Biophysical characterization of styryl dye-membrane interactions. Biophys J, 97 (1): 101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia T, Li N, Fang X (2013). Single-molecule fluorescence imaging in living cells. Annu Rev PhysChem, 64: 459–480

    Article  CAS  Google Scholar 

  • Xie X S, Trautman J K (1998). Optical studies of single molecules at room temperature. Annu Rev PhysChem, 49: 441–480

    Article  CAS  Google Scholar 

  • Yang Y, Calakos N (2013). Presynaptic long-term plasticity. Front Synaptic Neurosci, 5: 8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R (2003). Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300(5628): 2061–2065

    Article  CAS  PubMed  Google Scholar 

  • Yildiz A, Selvin P R (2005). Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res, 38(7): 574–582

    Article  CAS  PubMed  Google Scholar 

  • Zenisek D, Steyer J A, Almers W (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature, 406 (6798): 849–854

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Cao Y Q, Tsien R W (2007). Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci U S A, 104(45): 17843–17848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Li Y, Tsien RW (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science, 323 (5920): 1448–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Rothenberg E, Fruhwirth G, Simonson P D, Ye F, Golding I, Ng T, Lopes W, Selvin P R (2011). Two-photon 3D FIONA of individual quantum dots in an aqueous environment. Nano Lett, 11 (10):4074–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang L (2010). Uses of single-particle tracking in living cells. Drug Discov Ther, 4(2): 62–69

    PubMed  Google Scholar 

  • Zhu Y, Xu J, Heinemann S F (2009). Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron, 61(3): 397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyokeun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Zhang, M., Qin, X. et al. Real-time imaging of single synaptic vesicles in live neurons. Front. Biol. 11, 109–118 (2016). https://doi.org/10.1007/s11515-016-1397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1397-z

Keywords

Navigation