Skip to main content
Log in

Smoothened regulation in response to Hedgehog stimulation

  • Review
  • Published:
Frontiers in Biology

Abstract

The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G proteincoupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aikin R A, Ayers K L, Thérond P P (2008). The role of kinases in the Hedgehog signalling pathway. EMBO Rep, 9(4): 330–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper J E (1996). The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell, 86(2): 221–232

    Article  CAS  PubMed  Google Scholar 

  • Apionishev S, Katanayeva N M, Marks S A, Kalderon D, Tomlinson A (2005). Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol, 7(1): 86–92

    Article  CAS  PubMed  Google Scholar 

  • Arensdorf A M, Marada S, Ogden S K (2015). Smoothened Regulation: A Tale of Two Signals. Trends Pharmacol Sci, 37(1): 62–72

    Article  PubMed  CAS  Google Scholar 

  • Atwood S X, Li M, Lee A, Tang J Y, Oro A E (2013). GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas. Nature, 494(7438): 484–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atwood S X, Sarin K Y, Whitson R J, Li J R, Kim G, Rezaee M, Ally M S, Kim J, Yao C, Chang A L, Oro A E, Tang J Y (2015). Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell, 27(3): 342–353

    Article  CAS  PubMed  Google Scholar 

  • Balla T (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev, 93(3): 1019–1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balmer S, Dussert A, Collu G M, Benitez E, Iomini C, Mlodzik M (2015). Components of intraflagellar transport complex A function independently of the cilium to regulate canonical Wnt signaling in Drosophila. Dev Cell, 34(6): 705–718

    Article  CAS  PubMed  Google Scholar 

  • Bielas S L, Silhavy J L, Brancati F, Kisseleva M V, Al-Gazali L, Sztriha L, Bayoumi R A, Zaki M S, Abdel-Aleem A, Rosti R O, Kayserili H, Swistun D, Scott L C, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field S J, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus P W, Valente E M, Gleeson J G (2009). Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet, 41(9): 1032–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Briscoe J, Thérond P P (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol, 14 (7): 416–429

    Article  PubMed  CAS  Google Scholar 

  • Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, Hsiao K, Yuan J, Green J, Ospina B, Yu Q, Ostrom L, Fordjour P, Anderson D L, Monahan J E, Kelleher J F, Peukert S, Pan S, Wu X, Maira S M, García-Echeverría C, Briggs K J,Watkins D N, Yao Y M, Lengauer C, Warmuth M, Sellers W R, Dorsch M (2010). Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med, 2(51): 51ra70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Callejo A, Culi J, Guerrero I (2008). Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci USA, 105(3): 912–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Camp D, Currie K, Labbé A, van Meyel D J, Charron F (2010). Ihog and Boi are essential for Hedgehog signaling in Drosophila. Neural Dev, 5(1): 28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Casali A, Struhl G (2004). Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein. Nature, 431(7004): 76–80

    Article  CAS  PubMed  Google Scholar 

  • Casso D J, Liu S, Iwaki D D, Ogden S K, Kornberg T B (2008). A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics, 178(3): 1399–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chávez M, Ena S, Van Sande J, de Kerchove d’Exaerde A, Schurmans S, Schiffmann S N (2015). Modulation of ciliary phosphoinositide content regulates trafficking and sonic Hedgehog signaling output. Dev Cell, 34(3): 338–350

    Article  PubMed  CAS  Google Scholar 

  • Chen C H, von Kessler D P, Park W, Wang B, Ma Y, Beachy P A (1999). Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell, 98(3): 305–316

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Jiang J (2013). Decoding the phosphorylation code in Hedgehog signal transduction. Cell Res, 23(2): 186–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Li S, Tong C, Zhao Y, Wang B, Liu Y, Jia J, Jiang J (2010). G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinasedependent and kinase-independent mechanisms in Drosophila. Genes Dev, 24(18): 2054–2067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011). Sonic Hedgehog dependent phosphorylation by CK1a and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol, 9(6): e1001083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021

    Article  CAS  PubMed  Google Scholar 

  • DeCaen P G, Delling M, Vien T N, Clapham D E (2013). Direct recording and molecular identification of the calcium channel of primary cilia. Nature, 504(7479): 315–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delling M, DeCaen P G, Doerner J F, Febvay S, Clapham D E (2013). Primary cilia are specialized calcium signalling organelles. Nature, 504(7479): 311–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denef N, Neubüser D, Perez L, Cohen S M (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 102(4). 521–531

    Article  CAS  PubMed  Google Scholar 

  • Di Paolo G, De Camilli P (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112): 651–657

    Article  PubMed  CAS  Google Scholar 

  • Dorn K V, Hughes C E, Rohatgi R (2012). A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia. Dev Cell, 23(4): 823–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du J, Zhang J, Su Y, Liu M, Ospina J K, Yang S, Zhu A J (2011). In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling. PLoS ONE, 6(9): e24168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dussillol-Godar F, Brissard-Zahraoui J, Limbourg-Bouchon B, Boucher D, Fouix S, Lamour-Isnard C, Plessis A, Busson D (2006). Modulation of the Suppressor of fused protein regulates the Hedgehog signaling pathway in Drosophila embryo and imaginal discs. Dev Biol, 291(1): 53–66

    Article  CAS  PubMed  Google Scholar 

  • Eaton S (2008). Multiple roles for lipids in the Hedgehog signalling pathway. Nat Rev Mol Cell Biol, 9(6): 437–445

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Jiang K, Liu Y, Jia J (2013). Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling. PLoS ONE, 8(11): e79021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan J, Liu Y, Jia J (2012). Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and position-dependent manner. Dev Biol, 366(2): 172–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan S, Hurd T W, Liu C J, Straight S W,Weimbs T, Hurd E A, Domino S E, Margolis B (2004). Polarity proteins control ciliogenesis via kinesin motor interactions. Curr Biol, 14(16): 1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto T, Watanabe-Fukunaga R, Fujisawa K, Nagata S, Fukunaga R (2001). The fused protein kinase regulates Hedgehog-stimulated transcriptional activation in Drosophila Schneider 2 cells. J Biol Chem, 276(42): 38441–38448

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalo F R, Phua S C, Roberson E C, Garcia G 3rd, Abedin M, Schurmans S, Inoue T, Reiter J F (2015). Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. Dev Cell, 34(4): 400–409

    Article  CAS  PubMed  Google Scholar 

  • Goetz S C, Anderson K V (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 11(5): 331–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He Q, Wang G, Dasgupta S, Dinkins M, Zhu G, Bieberich E (2012). Characterization of an apical ceramide-enriched compartment regulating ciliogenesis. Mol Biol Cell, 23(16): 3156–3166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heo J S, Lee M Y, Han H J (2007). Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2+/protein kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem Cells, 25(12): 3069–3080

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt F, Benzing T, Katsanis N (2011). Ciliopathies. N Engl J Med, 364(16): 1533–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho K S, Suyama K, Fish M, Scott M P (2005). Differential regulation of Hedgehog target gene transcription by Costal2 and Suppressor of Fused. Development, 132(6): 1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Hooper J E, Scott M P (2005). Communicating with Hedgehogs. Nat Rev Mol Cell Biol, 6(4): 306–317

    Article  CAS  PubMed  Google Scholar 

  • Hsia E Y, Gui Y, Zheng X (2015). Regulation of Hedgehog signaling by ubiquitination. Front Biol (Beijing), 10(3): 203–220

    Article  CAS  Google Scholar 

  • Huangfu D, Anderson K V (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA, 102(32): 11325–11330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huangfu D, Liu A, Rakeman A S, Murcia N S, Niswander L, Anderson K V (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962): 83–87

    Article  CAS  PubMed  Google Scholar 

  • Humbert M C, Weihbrecht K, Searby C C, Li Y, Pope R M, Sheffield V C, Seo S (2012). ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci USA, 109 (48): 19691–19696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ingham P W, McMahon A P (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 15(23): 3059–3087

    Article  CAS  PubMed  Google Scholar 

  • Jacoby M, Cox J J, Gayral S, Hampshire D J, Ayub M, Blockmans M, Pernot E, Kisseleva M V, Compère P, Schiffmann S N, Gergely F, Riley J H, Pérez-Morga D, Woods C G, Schurmans S (2009). INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet, 41(9): 1027–1031

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Liu Y, Xia R, Tong C, Yue T, Jiang J, Jia J (2010). Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus. J Biol Chem, 285(48): 37218–37226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia H, Liu Y, Yan W, Jia J (2009). PP4 and PP2A regulate Hedgehog signaling by controlling Smo and Ci phosphorylation. Development, 136(2): 307–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia J (2012). Phosphorylation regulation of Hedgehog signaling. Vitam Horm, 88: 253–272

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002). Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature, 416(6880): 548–552

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Jiang J (2006). Decoding the Hedgehog signal in animal development. Cell Mol Life Sci, 63(11): 1249–1265

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Tong C, Jiang J (2003). Smoothened transduces Hedgehog signal by physically interacting with Costal2/Fused complex through its Cterminal tail. Genes Dev, 17(21): 2709–2720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia J, Tong C, Wang B, Luo L, Jiang J (2004). Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 432(7020): 1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Jiang J (2006). Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle, 5(21): 2457–2463

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Hui C C (2008). Hedgehog signaling in development and cancer. Dev Cell, 15(6): 801–812

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Struhl G (1995). Protein kinase A and hedgehog signaling in Drosophila limb development. Cell, 80(4): 563–572

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Struhl G (1998). Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 391(6666): 493–496

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Liu Y, Fan J, Epperly G, Gao T, Jiang J, Jia J (2014). Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila. Proc Natl Acad Sci USA, 111(45): E4842–E4850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang K, Liu Y, Fan J, Zhang J, Li X, Evers B M, Zhu H, Jia J (2016). PI (4). promotes phosphorylation and conformational change of Smoothened through interaction with its C-terminal tail. PLoS Biol, 14(1): e1002375

    Google Scholar 

  • Khaliullina H, Panáková D, Eugster C, Riedel F, Carvalho M, Eaton S (2009). Patched regulates Smoothened trafficking using lipoproteinderived lipids. Development, 136(24): 4111–4121

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hsia E Y, Brigui A, Plessis A, Beachy P A, Zheng X (2015). The role of ciliary trafficking in Hedgehog receptor signaling. Sci Signal, 8(379): ra55

    Article  PubMed  CAS  Google Scholar 

  • Kool M, Jones D T, Jäger N, Northcott P A, Pugh T J, Hovestadt V, Piro R M, Esparza L A, Markant S L, Remke M, Milde T, Bourdeaut F, Ryzhova M, Sturm D, Pfaff E, Stark S, Hutter S, Seker-Cin H, Johann P, Bender S, Schmidt C, Rausch T, Shih D, Reimand J, Sieber L, Wittmann A, Linke L, Witt H, Weber U D, Zapatka M, König R, Beroukhim R, Bergthold G, van Sluis P, Volckmann R, Koster J, Versteeg R, Schmidt S, Wolf S, Lawerenz C, Bartholomae C C, von Kalle C, Unterberg A, Herold-Mende C, Hofer S, Kulozik A E, von Deimling A, Scheurlen W, Felsberg J, Reifenberger G, Hasselblatt M, Crawford J R, Grant G A, Jabado N, Perry A, Cowdrey C, Croul S, Zadeh G, Korbel J O, Doz F, Delattre O, Bader G D, McCabeMG, Collins V P, Kieran M W, Cho Y J, Pomeroy S L, Witt O, Brors B, Taylor M D, Schüller U, Korshunov A, Eils R, Wechsler-Reya R J, Lichter P, Pfister S M, (2014). Genome sequencing of SHH medulloblastoma predicts genotyperelated response to smoothened inhibition. Cancer Cell, 25(3): 393–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovacs J J, Whalen E J, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz R J (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science, 320(5884): 1777–1781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuzhandaivel A, Schultz S W, Alkhori L, Alenius M (2014). Ciliamediated hedgehog signaling in Drosophila. Cell Reports, 7(3): 672–680

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen Y, Shi Q, Yue T, Wang B, Jiang J (2012). Hedgehogregulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol, 10(1): e1001239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li S, Ma G, Wang B, Jiang J (2014). Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation. Sci Signal, 7(332): ra62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu A, Wang B, Niswander L A (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132(13): 3103–3111

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cao X, Jiang J, Jia J (2007). Fused-Costal2 protein complex regulates Hedgehog-induced Smo phosphorylation and cell-surface accumulation. Genes Dev, 21(15): 1949–1963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lum L, Beachy P A (2004). The Hedgehog response network: sensors, switches, and routers. Science, 304(5678): 1755–1759

    Article  CAS  PubMed  Google Scholar 

  • Lum L, Zhang C, Oh S, Mann R K, von Kessler D P, Taipale J, Weis-Garcia F, Gong R, Wang B, Beachy P A (2003). Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell, 12(5): 1261–1274

    Article  CAS  PubMed  Google Scholar 

  • Marada S, Navarro G, Truong A, Stewart D P, Arensdorf A M, Nachtergaele S, Angelats E, Opferman J T, Rohatgi R, McCormick P J, Ogden S K (2015). Functional divergence in the role of N-linked glycosylation in Smoothened signaling. PLoS Genet, 11(8): e1005473

    Article  PubMed Central  PubMed  Google Scholar 

  • Méthot N, Basler K (2000). Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development, 127(18): 4001–4010

    PubMed  Google Scholar 

  • Mukhopadhyay S, Wen X, Chih B, Nelson C D, Lane W S, Scales S J, Jackson P K (2010). TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G proteincoupled receptors into primary cilia. Genes Dev, 24(19): 2180–2193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Wen X, Ratti N, Loktev A, Rangell L, Scales S J, Jackson P K (2013). The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell, 152(1–2): 210–223

    Article  CAS  PubMed  Google Scholar 

  • Myers B R, Sever N, Chong Y C, Kim J, Belani J D, Rychnovsky S, Bazan J F, Beachy P A (2013). Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell, 26(4): 346–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nachtergaele S, Whalen D M, Mydock L K, Zhao Z, Malinauskas T, Krishnan K, Ingham P W, Covey D F, Siebold C, Rohatgi R (2013). Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. eLife, 2: e01340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785): 795–801

    Article  PubMed  Google Scholar 

  • Nybakken K, Vokes S A, Lin T Y, McMahon A P, Perrimon N (2005). A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet, 37 (12): 1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Ogden S K, Fei D L, Schilling N S, Ahmed Y F, Hwa J, Robbins D J (2008). G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature, 456(7224): 967–970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh S, Kato M, Zhang C, Guo Y, Beachy P A (2015). A comparison of Ci/Gli activity as regulated by Sufu in Drosophila and mammalian Hedgehog response. PLoS ONE, 10(8): e0135804

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pradhan-Sundd T, Verheyen E M (2015). The Myopic-Ubpy-Hrs nexus enables endosomal recycling of Frizzled. Mol Biol Cell, 26(18): 3329–3342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price M A (2006). CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev, 20(4): 399–410

    Article  CAS  PubMed  Google Scholar 

  • Price M A, Kalderon D (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108(6): 823–835

    Article  CAS  PubMed  Google Scholar 

  • Prulière G, Cosson J, Chevalier S, Sardet C, Chenevert J (2011). Atypical protein kinase C controls sea urchin ciliogenesis. Mol Biol Cell, 22(12): 2042–2053

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pusapati G V, Hughes C E, Dorn K V, Zhang D, Sugianto P, Aravind L, Rohatgi R (2014). EFCAB7 and IQCE regulate hedgehog signaling by tethering the EVC-EVC2 complex to the base of primary cilia. Dev Cell, 28(5): 483–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rana R, Carroll C E, Lee H J, Bao J, Marada S, Grace C R, Guibao C D, Ogden S K, Zheng J J (2013). Structural insights into the role of the Smoothened cysteine-rich domain in Hedgehog signalling. Nat Commun, 4: 2965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ranieri N, Ruel L, Gallet A, Raisin S, Thérond P P (2012). Distinct phosphorylations on kinesin costal-2 mediate differential hedgehog signaling strength. Dev Cell, 22(2): 279–294

    Article  CAS  PubMed  Google Scholar 

  • Ranieri N, Thérond P P, Ruel L (2014). Switch of PKA substrates from Cubitus interruptus to Smoothened in the Hedgehog signalosome complex. Nat Commun, 5: 5034

    Article  CAS  PubMed  Google Scholar 

  • Robbins D J, Nybakken K E, Kobayashi R, Sisson J C, Bishop J M, Thérond P P (1997). Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell, 90(2): 225–234

    Article  CAS  PubMed  Google Scholar 

  • Rohatgi R, Milenkovic L, Corcoran R B, Scott M P (2009). Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA, 106(9): 3196–3201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376

    Article  CAS  PubMed  Google Scholar 

  • Rorick A M, Mei W, Liette N L, Phiel C, El-Hodiri H M, Yang J (2007). PP2A:B56epsilon is required for eye induction and eye field separation. Dev Biol, 302(2): 477–493

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum J L, Witman G B (2002). Intraflagellar transport. Nat Rev Mol Cell Biol, 3(11): 813–825

    Article  CAS  PubMed  Google Scholar 

  • Ruel L, Rodriguez R, Gallet A, Lavenant-Staccini L, Thérond P P (2003). Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nat Cell Biol, 5 (10): 907–913

    Article  CAS  PubMed  Google Scholar 

  • Sekulic A, Migden M R, Oro A E, Dirix L, Lewis K D, Hainsworth J D, Solomon J A, Yoo S, Arron S T, Friedlander P A, Marmur E, Rudin C M, Chang A L, Low J A, Mackey H M, Yauch R L, Graham R A, Reddy J C, Hauschild A (2012). Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med, 366(23): 2171–2179

    Article  CAS  PubMed  Google Scholar 

  • Sharpe H J, Pau G, Dijkgraaf G J, Basset-Seguin N, Modrusan Z, Januario T, Tsui V, Durham A B, Dlugosz A A, Haverty P M, Bourgon R, Tang J Y, Sarin K Y, Dirix L, Fisher D C, Rudin C M, Sofen H, Migden M R, Yauch R L, de Sauvage F J (2015). Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell, 27(3): 327–341

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Li S, Jia J, Jiang J (2011). The Hedgehog-induced Smoothened conformational switch assembles a signaling complex that activates Fused by promoting its dimerization and phosphorylation. Development, 138(19): 4219–4231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sisson J C, Ho K S, Suyama K, Scott M P (1997). Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell, 90 (2): 235–245

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Ospina J K, Zhang J, Michelson A P, Schoen A M, Zhu A J (2011). Sequential phosphorylation of smoothened transduces graded hedgehog signaling. Sci Signal, 4(180): ra43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swanson K D, Tang Y, Ceccarelli D F, Poy F, Sliwa J P, Neel B G, Eck M J (2008). The Skap-hom dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch. Mol Cell, 32(4): 564–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taipale J, Cooper M K, Maiti T, Beachy P A (2002). Patched acts catalytically to suppress the activity of Smoothened. Nature, 418 (6900): 892–897

    Article  CAS  PubMed  Google Scholar 

  • Tang J Y, Mackay-Wiggan J M, Aszterbaum M, Yauch R L, Lindgren J, Chang K, Coppola C, Chanana A M, Marji J, Bickers D R, Epstein E H (2012). Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med, 366(23): 2180–2188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thérond P P, Knight J D, Kornberg T B, Bishop J M (1996). Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc Natl Acad Sci USA, 93(9): 4224–4228

    Article  PubMed Central  PubMed  Google Scholar 

  • Tuson M, He M, Anderson K V (2011). Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development, 138(22): 4921–4930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang B, Fallon J F, Beachy P A (2000a). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell, 100(4): 423–434

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wu H, Katritch V, Han G W, Huang X P, Liu W, Siu F Y, Roth B L, Cherezov V, Stevens R C (2013). Structure of the human smoothened receptor bound to an antitumour agent. Nature, 497 (7449): 338–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang G, Amanai K, Wang B, Jiang J (2000b). Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev, 14(22): 2893–2905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Zhou Z, Walsh C T, McMahon A P (2009). Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci USA, 106(8): 2623–2628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams R L, Urbé S (2007). The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol, 8(5): 355–368

    Article  CAS  PubMed  Google Scholar 

  • Wilson C W, Chen M H, Chuang P T (2009). Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS ONE, 4(4): e5182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wilson C W, Chuang P T (2010). Mechanism and evolution of cytosolic Hedgehog signal transduction. Development, 137(13): 2079–2094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wollert T, Hurley J H (2010). Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature, 464(7290): 864–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia R, Jia H, Fan J, Liu Y, Jia J (2012). USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol, 10(1): e1001238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie J, Murone M, Luoh S M, Ryan A, Gu Q, Zhang C, Bonifas J M, Lam C W, Hynes M, Goddard A, Rosenthal A, Epstein E H, de Sauvage F J (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662): 90–92

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Chen W, Chen Y, Jiang J (2012). Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2. Cell Res, 22 (11): 1593–1604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Xie G, Fan Q, Xie J (2010). Activation of the hedgehogsignaling pathway in human cancer and the clinical implications. Oncogene, 29(4): 469–481

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Mao F, Lv X, Zhang Z, Fu L, Lu Y, Wu W, Zhou Z, Zhang L, Zhao Y (2013). Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J Cell Sci, 126(Pt 18): 4230–4238

    Article  CAS  PubMed  Google Scholar 

  • Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott M P, Banerjee U (2010). Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell, 19(1): 54–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X (2005). A dual-kinase mechanism for Wnt coreceptor phosphorylation and activation. Nature, 438(7069): 873–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Williams E H, Guo Y, Lum L, Beachy P A (2004). Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci USA, 101(52): 17900–17907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Du J, Lei C, Liu M, Zhu A J (2014). Ubpy controls the stability of the ESCRT-0 subunit Hrs in development. Development, 141(7): 1473–1479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005). Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell, 8(2): 267–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mao F, Lu Y, Wu W, Zhang L, Zhao Y (2011). Transduction of the Hedgehog signal through the dimerization of Fused and the nuclear translocation of Cubitus interruptus. Cell Res, 21(10): 1436–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao X, Ponomaryov T, Ornell K J, Zhou P, Dabral S K, Pak E, Li W, Atwood S X, Whitson R J, Chang A L, Li J, Oro A E, Chan J A, Kelleher J F, Segal R A (2015). RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors. Cancer Res, 75(17): 3623–3635

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Tong C, Jiang J (2007). Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 450(7167): 252–258

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Mann R K, Sever N, Beachy P A (2010). Genetic and biochemical definition of the Hedgehog receptor. Genes Dev, 24(1): 57–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwolak A, Yang C, Feeser E A, Ostap E M, Svitkina T, Dominguez R (2013). CARMIL leading edge localization depends on a noncanonical PH domain and dimerization. Nat Commun, 4: 2523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhang Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Jia, J. Smoothened regulation in response to Hedgehog stimulation. Front. Biol. 10, 475–486 (2015). https://doi.org/10.1007/s11515-015-1385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-015-1385-8

Keywords

Navigation