Skip to main content
Log in

Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases

  • Review
  • Published:
Frontiers in Biology

Abstract

Renal failure is a medical condition in which the kidneys are not working properly. There are two types of kidney failure: 1) acute kidney failure, which is sudden and often reversible with adequate treatment; and 2) chronic renal failure, which develops slowly and often is not reversible. The last stage of chronic renal failure is fatal without dialysis or kidney transplant. The treatment for chronic renal failure is focusing on slowing the progression of kidney damage. Several reports have described a promising approach to slow the loss of renal function through inhibition of the basolateral membrane, Ca2+-activated K+ (KCa3.1) channel with a selective and nontoxic blocker TRAM-34. This review summarizes pathophysiological studies that describe the role of KCa3.1 in kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albaqumi M, Srivastava S, Li Z, Zhdnova O, Wulff H, Itani O, Wallace D P, Skolnik E Y (2008). KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney Int, 74(6): 740–749

    PubMed  CAS  Google Scholar 

  • Amann B, Tinzmann R, Angelkort B (2003). ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care, 26(8): 2421–2425

    PubMed  CAS  Google Scholar 

  • Ataga K I, Smith W R, De Castro L M, Swerdlow P, Saunthararajah Y, Castro O, Vichinsky E, Kutlar A, Orringer E P, Rigdon G C, Stocker J W, the ICA-17043-05 Investigators (2008). Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood, 111(8): 3991–3997

    PubMed  CAS  Google Scholar 

  • Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K (2000). Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int, 58(2): 684–690

    PubMed  CAS  Google Scholar 

  • Barmeyer C, Rahner C, Yang Y, Sigworth F J, Binder H J, Rajendran V M (2010). Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am J Physiol Cell Physiol, 299(2): C251–C263

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan M D, Chandy K G, Béraud E (2001). Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A, 98(24): 13942–13947

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beeton C, Wulff H, Singh S, Botsko S, Crossley G, Gutman G A, Cahalan M D, Pennington M, Chandy K G (2003). A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. J Biol Chem, 278(11): 9928–9937

    PubMed  CAS  Google Scholar 

  • Beeton C, Wulff H, Standifer N E, Azam P, Mullen K M, Pennington M W, Kolski-Andreaco A, Wei E, Grino A, Counts D R, Wang P H, LeeHealey C J, S Andrews B, Sankaranarayanan A, Homerick D, Roeck W W, Tehranzadeh J, Stanhope K L, Zimin P, Havel P J, Griffey S, Knaus H G, Nepom G T, Gutman G A, Calabresi P A, Chandy K G (2006). Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 103(46): 17414–17419

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bertuccio C A, Lee S L, Wu G, Butterworth M B, Hamilton K L, Devor D C (2014). Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent. PLoS One, 9(3): e92013

    PubMed Central  PubMed  Google Scholar 

  • Biernacka A, Dobaczewski M, Frangogiannis N G (2011). TGF-β signaling in fibrosis. Growth Factors, 29(5): 196–202

    PubMed  CAS  Google Scholar 

  • Border W A, Noble N A (1994). Transforming growth factor beta in tissue fibrosis. N Engl J Med, 331(19): 1286–1292

    PubMed  CAS  Google Scholar 

  • Bradding P, Wulff H (2009). The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy. Br J Pharmacol, 157(8): 1330–1339

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brähler S, Kaistha A, Schmidt V J, Wölfle S E, Busch C, Kaistha B P, Kacik M, Hasenau A L, Grgic I, Si H, Bond C T, Adelman J P, Wulff H, de Wit C, Hoyer J, Köhler R (2009). Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation, 119(17): 2323–2332

    PubMed  Google Scholar 

  • Cahalan M D, Chandy K G, DeCoursey T E, Gupta S (1985). Avoltagegated potassium channel in human T lymphocytes. J Physiol, 358: 197–237

    PubMed Central  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2005). Incidence of end-stage renal disease among persons with diabetes—United States, 1990–2002. MMWR Morb Mortal Wkly Rep, 54(43): 1097–1100

    Google Scholar 

  • Chen M X, Gorman S A, Benson B, Singh K, Hieble J P, Michel M C, Tate S N, Trezise D J (2004). Small and intermediate conductance Ca (2 +)-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch Pharmacol, 369(6): 602–615

    PubMed  CAS  Google Scholar 

  • Cruse G, Duffy S M, Brightling C E, Bradding P (2006). Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax, 61(10): 880–885

    PubMed Central  PubMed  CAS  Google Scholar 

  • Davidow C J, Maser R L, Rome L A, Calvet J P, Grantham J J (1996). The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int, 50(1): 208–218

    PubMed  CAS  Google Scholar 

  • DeCoursey T E, Chandy K G, Gupta S, Cahalan M D (1984). Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature, 307(5950): 465–468

    PubMed  CAS  Google Scholar 

  • Devor D C, Bridges R J, Pilewski J M (2000). Pharmacological modulation of ion transport across wild-type and DeltaF508 CFT-Rexpressing human bronchial epithelia. Am J Physiol Cell Physiol, 279(2): C461–C479

    PubMed  CAS  Google Scholar 

  • Devor D C, Singh A K, Frizzell R A, Bridges R J (1996). Modulation of Cl secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol, 271(5 Pt 1): L775–L784

    PubMed  CAS  Google Scholar 

  • Devor D C, Singh A K, Lambert L C, DeLuca A, Frizzell R A, Bridges R J (1999). Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol, 113(5): 743–760

    PubMed Central  PubMed  CAS  Google Scholar 

  • Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik E Y (2010). Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci U S A, 107(4): 1541–1546

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dieu-Nosjean M C, Massacrier C, Homey B, Vanbervliet B, Pin J J, Vicari A, Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, Caux C (2000). Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med, 192(5): 705–718

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eitner F, Ostendorf T, Kretzler M, Cohen C D, Eriksson U, Gröne H J, Floege J, and the ERCB-Consortium (2003). PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J Am Soc Nephrol, 14(5): 1145–1153

    PubMed  CAS  Google Scholar 

  • Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H, Nishimura M, Roberts A B, Saito Y, Mori S (2003). Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun, 305(4): 1002–1007

    PubMed  CAS  Google Scholar 

  • Gewin L, Zent R (2012). How does TGF-β mediate tubulointerstitial fibrosis? Semin Nephrol, 32(3): 228–235

    PubMed  CAS  Google Scholar 

  • Ghanshani S, Wulff H, Miller M J, Rohm H, Neben A, Gutman G A, Cahalan M D, Chandy K G (2000). Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem, 275(47): 37137–37149

    PubMed  CAS  Google Scholar 

  • Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene E L, Grotendorst G, Trojanowska M (2002). TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol, 283(4): F707–F716

    PubMed  Google Scholar 

  • Grantham J J, Chapman A B, Torres V E (2006). Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol, 1(1): 148–157

    PubMed  Google Scholar 

  • Grantham J J, Cook LT, Torres V E, Bost J E, Chapman A B, Harris P C, Guay-Woodford LM, Bae K T (2008). Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int, 73(1): 108–116

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grantham J J, Geiser J L, Evan A P (1987). Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int, 31(5): 1145–1152

    PubMed  CAS  Google Scholar 

  • Grantham J J, Torres V E, Chapman A B, Guay-Woodford L M, Bae K T, King B F Jr, Wetzel L H, Baumgarten D A, Kenney P J, Harris P C, Klahr S, Bennett W M, Hirschman G N, Meyers C M, Zhang X, Zhu F, Miller J P, and the CRISP Investigators (2006). Volume progression in polycystic kidney disease. N Engl J Med, 354(20): 2122–2130

    PubMed  CAS  Google Scholar 

  • Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti V S, Ichimura T, Humphreys B D, Bonventre J V (2012). Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int, 82(2): 172–183

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, Köhler R (2005). Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol, 25(4): 704–709

    PubMed  CAS  Google Scholar 

  • Grgic I, Kiss E, Kaistha B P, Busch C, Kloss M, Sautter J, Müller A, Kaistha A, Schmidt C, Raman G, Wulff H, Strutz F, Gröne H J, Köhler R, Hoyer J (2009). Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci U S A, 106(34): 14518–14523

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grgic I, Wulff H, Eichler I, Flothmann C, Köhler R, Hoyer J (2009). Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Transplant Proc, 41(6): 2601–2606

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grissmer S, Dethlefs B, Wasmuth J J, Goldin A L, Gutman G A, Cahalan M D, Chandy K G (1990). Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci U S A, 87(23): 9411–9415

    PubMed Central  PubMed  CAS  Google Scholar 

  • Homey B, Dieu-Nosjean M C, Wiesenborn A, Massacrier C, Pin J J, Oldham E, Catron D, Buchanan M E, Müller A, deWaal Malefyt R, Deng G, Orozco R, Ruzicka T, Lehmann P, Lebecque S, Caux C, Zlotnik A (2000). Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol, 164(12): 6621–6632

    PubMed  CAS  Google Scholar 

  • Huang C, Day M L, Poronnik P, Pollock C A, Chen X M (2014). Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. Int J Biochem Cell Biol, 47: 1–10

    PubMed  CAS  Google Scholar 

  • Huang C, Pollock CA, Chen XM (2014) High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PLoS One, 9(4): e95173

    PubMed Central  PubMed  Google Scholar 

  • Huang C, Shen S, Ma Q, Chen J, Gill A, Pollock C A, Chen X M (2013). Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice. Diabetes, 62(8): 2923–2934

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huang X R, Chung A C, Yang F, Yue W, Deng C, Lau C P, Tse H F, Lan H Y (2010). Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension, 55(5): 1165–1171

    PubMed  CAS  Google Scholar 

  • Ishii T M, Silvia C, Hirschberg B, Bond C T, Adelman J P, Maylie J (1997). A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A, 94(21): 11651–11656

    PubMed Central  PubMed  CAS  Google Scholar 

  • Isono M, Chen S, Hong S W, Iglesias-de la Cruz M C, Ziyadeh F N (2002). Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun, 296(5): 1356–1365

    PubMed  CAS  Google Scholar 

  • Iwano M, Kubo A, Nishino T, Sato H, Nishioka H, Akai Y, Kurioka H, Fujii Y, Kanauchi M, Shiiki H, Dohi K (1996). Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int, 49(4): 1120–1126

    PubMed  CAS  Google Scholar 

  • Iwano M, Neilson E G (2004). Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens, 13(3): 279–284

    PubMed  Google Scholar 

  • Izu L T, McCulle S L, Ferreri-Jacobia M T, Devor D C, Duffey M E (2002). Vasoactive intestinal peptide-stimulated Cl secretion: activation of cAMP-dependent K+ channels. J Membr Biol, 186(3): 145–157

    PubMed  CAS  Google Scholar 

  • Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004). Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol, 65(3): 630–638

    PubMed  Google Scholar 

  • Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski H D, Reusch H P, Paul M, Chandy K G, Hoyer J (2003). Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation, 108(9): 1119–1125

    PubMed  Google Scholar 

  • Lambert P P (1947). Polycystic disease of the kidney; a review. Arch Pathol (Chic), 44(1): 34–58

    CAS  Google Scholar 

  • Leichtman A B (2007). Balancing efficacy and toxicity in kidneytransplant immunosuppression. N Engl J Med, 357(25): 2625–2627

    PubMed  CAS  Google Scholar 

  • Li H, Findlay I A, Sheppard D N (2004). The relationship between cell proliferation, Cl secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int, 66(5): 1926–1938

    PubMed  CAS  Google Scholar 

  • Li J, Qu X, Yao J, Caruana G, Ricardo S D, Yamamoto Y, Yamamoto H, Bertram J F (2010). Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocininduced diabetic nephropathy. Diabetes, 59(10): 2612–2624

    PubMed Central  PubMed  CAS  Google Scholar 

  • Logsdon N J, Kang J, Togo J A, Christian E P, Aiyar J (1997). A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem, 272(52): 32723–32726

    PubMed  CAS  Google Scholar 

  • López-Hernández F J, López-Novoa J M (2012). Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res, 347(1): 141–154

    PubMed  Google Scholar 

  • Mall M, Gonska T, Thomas J, Schreiber R, Seydewitz H H, Kuehr J, Brandis M, Kunzelmann K (2003). Modulation of Ca2+-activated Clsecretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res, 53(4): 608–618

    PubMed  CAS  Google Scholar 

  • Mangos S, Lam P Y, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond I A (2010). The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech, 3(5–6): 354–365

    PubMed Central  PubMed  CAS  Google Scholar 

  • Matteson D R, Deutsch C (1984). K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature, 307(5950): 468–471

    PubMed  CAS  Google Scholar 

  • Mezzano S, Aros C, Droguett A, Burgos M E, Ardiles L, Flores C, Schneider H, Ruiz-Ortega M, Egido J (2004). NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant, 19(10): 2505–2512

    PubMed  CAS  Google Scholar 

  • Morii T, Fujita H, Narita T, Shimotomai T, Fujishima H, Yoshioka N, Imai H, Kakei M, Ito S (2003). Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complications, 17(1): 11–15

    PubMed  Google Scholar 

  • Nakayama T, Fujisawa R, Yamada H, Horikawa T, Kawasaki H, Hieshima K, Izawa D, Fujiie S, Tezuka T, Yoshie O (2001). Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3 alpha/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int Immunol, 13(1): 95–103

    PubMed  CAS  Google Scholar 

  • Neilson E G (2006). Mechanisms of disease: Fibroblasts—a new look at an old problem. Nat Clin Pract Nephrol, 2(2): 101–108

    PubMed  CAS  Google Scholar 

  • Neylon C B, Lang R J, Fu Y, Bobik A, Reinhart P H (1999). Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res, 85(9): e33–e43

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G (2001). Ion channels and their functional role in vascular endothelium. Physiol Rev, 81(4): 1415–1459

    PubMed  CAS  Google Scholar 

  • O’Sullivan D A, Torres V E, Gabow P A, Thibodeau S N, King B F, Bergstralh E J (1998). Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis, 32(6): 976–983

    PubMed  Google Scholar 

  • Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H (2007). Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol, 292(4): F1141–F1150

    PubMed  CAS  Google Scholar 

  • Pankewycz O G, Guan J X, Bolton W K, Gomez A, Benedict J F (1994). Renal TGF-beta regulation in spontaneously diabetic NOD mice with correlations in mesangial cells. Kidney Int, 46(3): 748–758

    PubMed  CAS  Google Scholar 

  • Park I S, Kiyomoto H, Abboud S L, Abboud H E (1997). Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes, 46(3): 473–480

    PubMed  CAS  Google Scholar 

  • Peña T L, Chen S H, Konieczny S F, Rane S G (2000). Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem, 275(18): 13677–13682

    PubMed  Google Scholar 

  • Peña T L, Rane S G (1999). The fibroblast intermediate conductance K (Ca) channel, FIK, as a prototype for the cell growth regulatory function of the IK channel family. J Membr Biol, 172(3): 249–257

    PubMed  Google Scholar 

  • Qi W, Chen X, Polhill T S, Sumual S, Twigg S, Gilbert R E, Pollock C A (2006). TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am J Physiol Renal Physiol, 290(3): F703–F709

    PubMed  CAS  Google Scholar 

  • Qi W, Chen X, Zhang Y, Holian J, Mreich E, Gilbert R E, Kelly D J, Pollock C A (2007). High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism. Nephrol Dial Transplant, 22(11): 3147–3153

    PubMed  CAS  Google Scholar 

  • Qi W, Holian J, Tan C Y, Kelly D J, Chen XM, Pollock C A (2011). The roles of Kruppel-like factor 6 and peroxisome proliferator-activated receptor-γ in the regulation of macrophage inflammatory protein-3α at early onset of diabetes. Int J Biochem Cell Biol, 43(3): 383–392

    PubMed  CAS  Google Scholar 

  • Reddy G R, Kotlyarevska K, Ransom R F, Menon R K (2008). The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy? Curr Opin Nephrol Hypertens, 17(1): 32–36

    PubMed  Google Scholar 

  • Robinette L, Abraham W M, Bradding P, Krajewski J, Antonio B, Shelton T, Bannon AW, Rigdon G, Krafte D, Wagoner K, Castle N A (2008) Senicapoc® (ICA-17043), a potent and selective KCa 3.1 K+ channel blocker, attenuates allergen-induced asthma in sheep. 15th International Conference of the Inflammation Research Association

    Google Scholar 

  • Rosolowsky E T, Skupien J, Smiles A M, Niewczas M, Roshan B, Stanton R, Eckfeldt J H, Warram J H, Krolewski A S (2011). Risk for ESRD in type 1 diabetes remains high despite renoprotection. J Am Soc Nephrol, 22(3): 545–553

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rufo PA, Jiang L, Moe S J, Brugnara C, Alper S L, Lencer W I (1996). The antifungal antibiotic, clotrimazole, inhibits Cl secretion by polarized monolayers of human colonic epithelial cells. J Clin Invest, 98(9): 2066–2075

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruiz-Ortega M, Rupérez M, Esteban V, Rodríguez-Vita J, Sánchez-López E, Carvajal G, Egido J (2006). Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant, 21(1): 16–20

    PubMed  CAS  Google Scholar 

  • Rus H, Pardo C A, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen K M, Allie R, Guo L, Wulff H, Beeton C, Judge S I, Kerr D A, Knaus H G, Chandy K G, Calabresi PA (2005). The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A, 102(31): 11094–11099

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schlichter L, Sidell N, Hagiwara S (1986). K channels are expressed early in human T-cell development. Proc Natl Acad Sci U S A, 83(15): 5625–5629

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Gröne H J, Nelson P J, Schlöndorff D, Cohen C D, Kretzler M, and the European Renal cDNA Bank (ERCB) Consortium (2006). Modular activation of nuclear factorkappaB transcriptional programs in human diabetic nephropathy. Diabetes, 55(11): 2993–3003

    PubMed  CAS  Google Scholar 

  • Sharma K, McGowan T A (2000). TGF-beta in diabetic kidney disease: role of novel signaling pathways. Cytokine Growth Factor Rev, 11(1–2): 115–123

    PubMed  CAS  Google Scholar 

  • Sharma K, Ziyadeh F N, Alzahabi B, McGowan TA, Kapoor S, Kurnik B R, Kurnik P B, Weisberg L S (1997). Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes, 46(5): 854–859

    PubMed  CAS  Google Scholar 

  • Si H, Grgic I, Heyken W T, Maier T, Hoyer J, Reusch H P, Köhler R (2006). Mitogenic modulation of Ca2+-activated K+ channels in proliferating A7r5 vascular smooth muscle cells. Br J Pharmacol, 148(7): 909–917

    PubMed Central  PubMed  CAS  Google Scholar 

  • Si H, Heyken W T, Wöllfle S E, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Köhler R (2006). Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res, 99(5): 537–544

    PubMed  CAS  Google Scholar 

  • Singh S, Syme C A, Singh A K, Devor D C, Bridges R J (2001). Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther, 296(2): 600–611

    PubMed  CAS  Google Scholar 

  • Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, Müler G A (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int, 57(4): 1521–1538

    PubMed  CAS  Google Scholar 

  • Sugita S, Kohno T, Yamamoto K, Imaizumi Y, Nakajima H, Ishimaru T, Matsuyama T (2002). Induction of macrophage-inflammatory protein-3alpha gene expression by TNF-dependent NF-kappaB activation. J Immunol, 168(11): 5621–5628

    PubMed  CAS  Google Scholar 

  • Sullivan L P, Wallace D P, Grantham J J (1998). Epithelial transport in polycystic kidney disease. Physiol Rev, 78(4): 1165–1191

    PubMed  CAS  Google Scholar 

  • Terryn S, Ho A, Beauwens R, Devuyst O (2011). Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta, 1812(10): 1314–1321

    PubMed  CAS  Google Scholar 

  • Tharp D L, Wamhoff B R, Turk J R, Bowles D K (2006). Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol, 291(5): H2493–H2503

    PubMed  CAS  Google Scholar 

  • Tharp D L, Wamhoff B R, Wulff H, Raman G, Cheong A, Bowles D K (2008). Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol, 28(6): 1084–1089

    PubMed Central  PubMed  CAS  Google Scholar 

  • Torres V E, Harris P C (2009). Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int, 76(2): 149–168

    PubMed Central  PubMed  Google Scholar 

  • Torres V E, Harris P C, Pirson Y (2007). Autosomal dominant polycystic kidney disease. Lancet, 369(9569): 1287–1301

    PubMed  Google Scholar 

  • Toyama K, Wulff H, Chandy K G, Azam P, Raman G, Saito T, Fujiwara Y, Mattson D L, Das S, Melvin J E, Pratt P F, Hatoum O A, Gutterman D D, Harder D R, Miura H (2008). The intermediateconductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest, 118(9): 3025–3037

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda S I, Takasawa K, Yoshimura M, Kida H, Kobayashi K I, Mukaida N, Naito T, Matsushima K, Yokoyama H (2000). Upregulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int, 58(4): 1492–1499

    PubMed  CAS  Google Scholar 

  • Wallace D P, Grantham J J, Sullivan L P (1996). Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int, 50(4): 1327–1336

    PubMed  CAS  Google Scholar 

  • Wang L P, Wang Y, Zhao LM, Li G R, Deng X L (2013). Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts. Biochem Pharmacol, 85(10): 1486–1494

    PubMed  CAS  Google Scholar 

  • Wang Z H, Shen B, Yao H L, Jia Y C, Ren J, Feng Y J, Wang Y Z (2007). Blockage of intermediate-conductance-Ca2+-activated K+ channels inhibits progression of human endometrial cancer. Oncogene, 26(35): 5107–5114

    PubMed  CAS  Google Scholar 

  • Wojtulewski J A, Gow P J, Walter J, Grahame R, Gibson T, Panayi G S, Mason J (1980). Clotrimazole in rheumatoid arthritis. Ann Rheum Dis, 39(5): 469–472

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wolf G (2003). Growth factors and the development of diabetic nephropathy. Curr Diab Rep, 3(6): 485–490

    PubMed  Google Scholar 

  • Wolf G, Ziyadeh F N (1999). Molecular mechanisms of diabetic renal hypertrophy. Kidney Int, 56(2): 393–405

    PubMed  CAS  Google Scholar 

  • Wulff H, Calabresi P A, Allie R, Yun S, Pennington M, Beeton C, Chandy K G (2003). The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J Clin Invest, 111(11): 1703–1713

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xu N, Glockner J F, Rossetti S, Babovich-Vuksanovic D, Harris P C, Torres V E (2006). Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J Nephrol, 19(4): 529–534

    PubMed  Google Scholar 

  • Yamamoto T, Nakamura T, Noble N A, Ruoslahti E, Border WA (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A, 90(5): 1814–1818

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ye M, Grantham J J (1993). The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med, 329(5): 310–313

    PubMed  CAS  Google Scholar 

  • Yoshie O, Imai T, Nomiyama H (2001). Chemokines in immunity. Adv Immunol, 78: 57–110

    PubMed  CAS  Google Scholar 

  • Yu L, Border WA, Huang Y, Noble N A (2003). TGF-β isoforms in renal fibrogenesis. Kidney Int, 64(3): 844–856

    PubMed  CAS  Google Scholar 

  • Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003). BMP-7 counteracts TGF-beta1-induced epithelialto-mesenchymal transition and reverses chronic renal injury. Nat Med, 9(7): 964–968

    PubMed  CAS  Google Scholar 

  • Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, Rafii S, Liu B, Kent K C (2009). Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem, 284(26): 17564–17574

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao L M, Zhang W, Wang L P, Li G R, Deng X L (2012). Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. Pflugers Arch, 464(6): 613–621

    PubMed  CAS  Google Scholar 

  • Zheng H, Whitman S A, Wu W, Wondrak G T, Wong P K, Fang D, Zhang D D (2011). Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes, 60(11): 3055–3066

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia A. Bertuccio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertuccio, C.A., Devor, D.C. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases. Front. Biol. 10, 52–60 (2015). https://doi.org/10.1007/s11515-014-1339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1339-6

Keywords

Navigation