Skip to main content
Log in

Regulation and function of stimulus-induced phosphorylation of MeCP2

  • Review
  • Published:
Frontiers in Biology

Abstract

DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188

    Article  PubMed  CAS  Google Scholar 

  • Asaka Y, Jugloff D G, Zhang L, Eubanks J H, Fitzsimonds R M (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis, 21(1): 217–227

    Article  PubMed  CAS  Google Scholar 

  • Ballas N, Lioy D T, Grunseich C, Mandel G (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci, 12(3): 311–317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bracaglia G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg M E, Landsberger N, Soddu S, Kilstrup-Nielsen C (2009). Methyl-CpGbinding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep, 10(12): 1327–1333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buchthal B, Lau D, Weiss U, Weislogel J M, Bading H (2012). Nuclear calcium signaling controls methyl-CpG-binding protein 2 (MeCP2) phosphorylation on serine 421 following synaptic activity. J Biol Chem, 287(37): 30967–30974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437

    Article  PubMed  CAS  Google Scholar 

  • Chao H T, Zoghbi H Y, Rosenmund C (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1): 58–65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen W G, Chang Q, Lin Y, Meissner A, West A E, Griffith E C, Jaenisch R, Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889

    Article  PubMed  CAS  Google Scholar 

  • Cheng T L, Wang Z, Liao Q, Zhu Y, Zhou W H, Xu W, Qiu Z (2014). MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell, 28(5): 547–560

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Gabel HW, Hemberg M, Hutchinson A N, Sadacca L A, Ebert D H, Harmin D A, Greenberg R S, Verdine V K, Zhou Z, Wetsel W C, West A E, Greenberg M E (2011). Genome-wide activitydependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1): 72–85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689

    Article  PubMed  CAS  Google Scholar 

  • Deng J V, Rodriguiz R M, Hutchinson A N, Kim I H, Wetsel W C, West A E (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci, 13(9): 1128–1136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deng J V, Wan Y, Wang X, Cohen S, Wetsel W.C, Greenberg M E, Kenny P J, Calakos N, West A E (2014). MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. J Neurosci, 34: 4519–4527

    Article  PubMed  PubMed Central  Google Scholar 

  • Derecki N C, Cronk J C, Lu Z, Xu E, Abbott S B, Guyenet P G, Kipnis J (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392): 105–109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ebert D H, Gabel H W, Robinson N D, Kastan N R, Hu L S, Cohen S, Navarro A J, Lyst M J, Ekiert R, Bird A P, Greenberg M E (2013). Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature, 499(7458): 341–345

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fyffe S L, Neul J L, Samaco R C, Chao H T, Ben-Shachar S, Moretti P, McGill B E, Goulding E H, Sullivan E, Tecott L H, Zoghbi H Y (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6): 947–958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Géranton S M, Fratto V, Tochiki K K, Hunt S P (2008). Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Mol Pain, 4(1): 35

    Article  PubMed  PubMed Central  Google Scholar 

  • Géranton S M, Morenilla-Palao C, Hunt S P (2007). A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J Neurosci, 27: 6163–6173

    Article  PubMed  Google Scholar 

  • Gonzales M L, Adams S, Dunaway K W, LaSalle J M (2012). Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Mol Cell Biol, 32(14): 2894–2903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hagberg B (1985). Rett’s syndrome: prevalence and impact on progressive severe mental retardation in girls. Acta Paediatr Scand, 74(3): 405–408

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson A N, Deng J V, Aryal D K, Wetsel W C, West A E (2012a). Differential regulation of MeCP2 phosphorylation in the CNS by dopamine and serotonin. Neuropsychopharmacology, 37: 321–337

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hutchinson A N, Deng, J V, Cohen S, West A E (2012b). Phosphorylation of MeCP2 at Ser421 contributes to chronic antidepressant action. J Neurosci, 32: 14355–14363

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2): 187–191

    Article  PubMed  CAS  Google Scholar 

  • Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6): 905–914

    Article  PubMed  CAS  Google Scholar 

  • Li H, Zhong X, Chau K F, Williams E C, Chang Q (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat Neurosci, 14(8): 1001–1008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lioy D T, Garg S K, Monaghan C E, Raber J, Foust K D, Kaspar B K, Hirrlinger P G, Kirchhoff F, Bissonnette J M, Ballas N, Mandel G (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357): 497–500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lyst M J, Ekiert R, Ebert D H, Merusi C, Nowak J, Selfridge J, Guy J, Kastan N R, Robinson N D, de Lima Alves F, Rappsilber J, Greenberg M E, Bird A (2013). Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci, 16(7): 898–902

    Article  PubMed  CAS  Google Scholar 

  • Mao L M, Horton E, Guo M L, Xue B, Jin D Z, Fibuch E E, Wang J Q (2011). Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: a differential role of NMDA receptors. Neurochem Int, 59(5): 610–617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyake K, Nagai K (2007). Phosphorylation of methyl-CpG binding protein 2 (MeCP2) regulates the intracellular localization during neuronal cell differentiation. Neurochem Int, 50(1): 264–270

    Article  PubMed  CAS  Google Scholar 

  • Moretti P, Levenson J.M, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y(2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Murgatroyd C, Patchev A V, Wu Y, Micale V, Bockmühl Y, Fischer D, Holsboer F, Wotjak C T, Almeida O F, Spengler D (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci, 12(12): 1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan R P, Hogart A R, Gwye Y, Martin M R, LaSalle J M (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics: official journal of the DNA Methylation Society, 1: e1–11

    Article  Google Scholar 

  • Nagarajan R P, Patzel K A, Martin M, Yasui D H, Swanberg S E, Hertz-Picciotto I, Hansen R L, Van de Water J, Pessah I N, Jiang R, Robinson W P, LaSalle J M (2008). MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res, 1: 169–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Nan X, Campoy F J, Bird A (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88(4): 471–481

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Ng H H, Johnson C A, Laherty C D, Turner BM, Eisenman R N, Bird A (1998). Transcriptional repression by the methyl-CpGbinding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683): 386–389

    Article  PubMed  CAS  Google Scholar 

  • Nguyen M V, Felice C A, Du F, Covey M V, Robinson J K, Mandel G, Ballas N (2013). Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci, 33: 18764–18774

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qiu Z, Sylwestrak E L, Lieberman D N, Zhang Y, Liu X Y, Ghosh A (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci, 32: 989–994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramocki M B, Peters S U, Tavyev Y J, Zhang F, Carvalho C M, Schaaf C P, Richman R, Fang P, Glaze D G, Lupski J R, Zoghbi H Y (2009). Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol, 66(6): 771–782

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rexach J E, Rogers C J, Yu S H, Tao J, Sun Y E, Hsieh-Wilson L C (2010). Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat Chem Biol, 6(9): 645–651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skene P J, Illingworth R S, Webb S, Kerr A R, James K D, Turner D J, Andrews R, Bird A P (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 37(4): 457–468

    Article  PubMed  CAS  Google Scholar 

  • Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14(12): 1607–1616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tao J, Hu K, Chang Q, Wu H, Sherman N E, Martinowich K, Klose R J, Schanen C, Jaenisch R, Wang W, Sun Y E (2009). Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci USA, 106(12): 4882–4887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xi C Y, Ma H W, Lu Y, Zhao Y J, Hua T Y, Zhao Y, Ji Y H (2007). MeCP2 gene mutation analysis in autistic boys with developmental regression. Psychiatr Genet, 17(2): 113–116

    Article  PubMed  Google Scholar 

  • Zhong X, Li H, Chang Q (2012). MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5. J Neurosci, 32: 12841–12847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou Z, Hong E J, Cohen S, Zhao WN, Ho H Y, Schmidt L, Chen WG, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chang, Q. Regulation and function of stimulus-induced phosphorylation of MeCP2. Front. Biol. 9, 367–375 (2014). https://doi.org/10.1007/s11515-014-1330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1330-2

Keywords

Navigation