Skip to main content
Log in

Growth arrest signaling of the Raf/MEK/ERK pathway in cancer

  • Review
  • Published:
Frontiers in Biology

Abstract

The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ ERK-mediated growth arrest signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthan D, Hong S K, Park J I (2010). Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett, 297(1): 31–41

    Article  PubMed  CAS  Google Scholar 

  • Balk S P, Knudsen K E (2008). AR, the cell cycle, and prostate cancer. Nucl Recept Signal, 6: e001

    PubMed Central  PubMed  Google Scholar 

  • Bélanger L F, Roy S, Tremblay M, Brott B, Steff AM, Mourad W, Hugo P, Erikson R, Charron J (2003). Mek2 is dispensable for mouse growth and development. Mol Cell Biol, 23(14): 4778–4787

    Article  PubMed Central  PubMed  Google Scholar 

  • Bessard A, Frémin C, Ezan F, Fautrel A, Gailhouste L, Baffet G (2008). RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene, 27(40): 5315–5325

    Article  PubMed  CAS  Google Scholar 

  • Binétruy B, Heasley L, Bost F, Caron L, Aouadi M (2007). Concise review: regulation of embryonic stem cell lineage commitment by mitogen-activated protein kinases. Stem Cells, 25(5): 1090–1095

    Article  PubMed  Google Scholar 

  • Boulton T G, Yancopoulos G D, Gregory J S, Slaughter C, Moomaw C, Hsu J, Cobb M H (1990). An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 249(4964): 64–67

    Article  PubMed  CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters A H, Schlegelberger B, Stein H, Dörken B, Jenuwein T, Schmitt C A (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 436(7051): 660–665

    Article  PubMed  CAS  Google Scholar 

  • Burkhard K A, Chen F, Shapiro P (2011). Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity. J Biol Chem, 286(4): 2477–2485

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cagnol S, Chambard J C (2010). ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J, 277(1): 2–21

    Article  PubMed  CAS  Google Scholar 

  • Carson E B, McMahon M, Baylin S B, Nelkin B D (1995). Ret gene silencing is associated with Raf-1-induced medullary thyroid carcinoma cell differentiation. Cancer Res, 55(10): 2048–2052

    PubMed  CAS  Google Scholar 

  • Carson-Walter E B, Smith D P, Ponder B A, Baylin S B, Nelkin B D (1998). Post-transcriptional silencing of RET occurs, but is not required, during raf-1 mediated differentiation of medullary thyroid carcinoma cells. Oncogene, 17(3): 367–376

    Article  PubMed  CAS  Google Scholar 

  • Casar B, Pinto A, Crespo P (2008). Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell, 31(5): 708–721

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Fujii K, Zhang L, Roberts T, Fu H (2001). Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA, 98(14): 7783–7788

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheung M, Sharma A, Madhunapantula S V, Robertson G P (2008). Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res, 68(9): 3429–3439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher A J, Barradas M, Benguría A, Zaballos A, Flores J M, Barbacid M, Beach D, Serrano M (2005). Tumour biology: senescence in premalignant tumours. Nature, 436(7051): 642

    Article  PubMed  CAS  Google Scholar 

  • Courchesne W E, Kunisawa R, Thorner J (1989). A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell, 58(6): 1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Courtois-Cox S, Jones S L, Cichowski K (2008). Many roads lead to oncogene-induced senescence. Oncogene, 27(20): 2801–2809

    Article  PubMed  CAS  Google Scholar 

  • Dhillon A S, Hagan S, Rath O, Kolch W (2007). MAP kinase signaling pathways in cancer. Oncogene, 26(22): 3279–3290

    Article  PubMed  CAS  Google Scholar 

  • Dhillon A S, Meikle S, Peyssonnaux C, Grindlay J, Kaiser C, Steen H, Shaw P E, Mischak H, Eychène A, Kolch W (2003). A Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation. Mol Cell Biol, 23(6): 1983–1993

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Duhamel S, Hébert J, Gaboury L, Bouchard A, Simon R, Sauter G, Basik M, Meloche S (2012). Sef downregulation by Ras causes MEK1/2 to become aberrantly nuclear localized leading to polyploidy and neoplastic transformation. Cancer Res, 72(3): 626–635

    Article  PubMed  CAS  Google Scholar 

  • Eblen S T, Slack-Davis J K, Tarcsafalvi A, Parsons J T, Weber M J, Catling A D (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol, 24(6): 2308–2317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fanton C P, McMahon M, Pieper R O (2001). Dual growth arrest pathways in astrocytes and astrocytic tumors in response to Raf-1 activation. J Biol Chem, 276(22): 18871–18877

    Article  PubMed  CAS  Google Scholar 

  • Ferrell J E Jr (1996). Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci, 21(12): 460–466

    Article  PubMed  CAS  Google Scholar 

  • Fischer A M, Katayama C D, Pagès G, Pouysségur J, Hedrick S M (2005). The role of erk1 and erk2 in multiple stages of T cell development. Immunity, 23(4): 431–443

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Gotoh Y, Nishida E (1997). Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J, 16(8): 1901–1908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Giroux S, Tremblay M, Bernard D, Cardin-Girard J F, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, Charron J (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol, 9(7): 369–372

    Article  PubMed  CAS  Google Scholar 

  • Guégan J P, Ezan F, Gailhouste L, Langouët S, Baffet G (2013b). MEK1/2 Overactivation can Promote Growth Arrest by Mediating ERK1/2-Dependent Phosphorylation of p70S6K. J Cell Physiol: doi: 10.1002/jcp.24521

  • Guégan J P, Ezan F, Théret N, Langouët S, Baffet G (2013a). MAPK signaling in cisplatin-induced death: predominant role of ERK1 over ERK2 in human hepatocellular carcinoma cells. Carcinogenesis, 34(1): 38–47

    Article  PubMed  Google Scholar 

  • Gupta R, Wajapeyee N (2013). Induction of cellular senescence by oncogenic RAS. Methods Mol Biol, 1048: 127–133

    Article  PubMed  Google Scholar 

  • Hamilton WB, Kaji K, Kunath T (2013). ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment. PLoS ONE, 8(4): e60907

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hong S K, Kim J H, Lin M F, Park J I (2011). The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res, 317(18): 2671–2682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hong S K, Yoon S, Moelling C, Arthan D, Park J I (2009). Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem, 284(48): 33006–33018

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H S, Woodard C, Wang H, Jeong J S, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3): 610–622

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hwang C Y, Lee C, Kwon K S (2009). Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1. Mol Cell Biol, 29(12): 3379–3389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim E J, Park J I, Nelkin B D (2005). IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J Biol Chem, 280(6): 4913–4920

    Article  PubMed  CAS  Google Scholar 

  • Kortenjann M, Thomae O, Shaw P E (1994). Inhibition of v-rafdependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol, 14(7): 4815–4824

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krens S F, He S, Lamers G E, Meijer A H, Bakkers J, Schmidt T, Spaink H P, Snaar-Jagalska B E (2008). Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Dev Biol, 319(2): 370–383

    Article  PubMed  CAS  Google Scholar 

  • Kucharska A, Rushworth L K, Staples C, Morrice N A, Keyse S M (2009). Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal, 21(12): 1794–1805

    Article  PubMed  CAS  Google Scholar 

  • Lawrence M C, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S, Chen W, Cobb MH (2008). The roles of MAPKs in disease. Cell Res, 18(4): 436–442

    Article  PubMed  CAS  Google Scholar 

  • Lefloch R, Pouysségur J, Lenormand P (2008). Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol, 28(1): 511–527

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin A W, Barradas M, Stone J C, van Aelst L, Serrano M, Lowe S W (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev, 12(19): 3008–3019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mabry M, Nakagawa T, Baylin S, Pettengill O, Sorenson G, Nelkin B (1989). Insertion of the v-Ha-ras oncogene induces differentiation of calcitonin-producing human small cell lung cancer. J Clin Invest, 84(1): 194–199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mansour S J, Candia J M, Gloor K K, Ahn N G (1996). Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ, 7(2): 243–250

    PubMed  CAS  Google Scholar 

  • McCubrey J A, Steelman L S, Chappell W H, Abrams S L, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino M C, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli A M (2012). Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget, 3(9): 954–987

    PubMed Central  PubMed  Google Scholar 

  • McDuff F K, Turner S D (2011). Jailbreak: oncogene-induced senescence and its evasion. Cell Signal, 23(1): 6–13

    Article  PubMed  CAS  Google Scholar 

  • Mebratu Y, Tesfaigzi Y (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle, 8(8): 1168–1175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Michaloglou C, Vredeveld L C, Soengas M S, Denoyelle C, Kuilman T, van der Horst C M, Majoor D M, Shay J W, Mooi W J, Peeper D S (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051): 720–724

    Article  PubMed  CAS  Google Scholar 

  • Mooi WJ, Peeper D S (2006). Oncogene-induced cell senescence-halting on the road to cancer. N Engl J Med, 355(10): 1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Nadeau V, Guillemette S, Bélanger L F, Jacob O, Roy S, Charron J (2009). Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development, 136(8): 1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Mabry M, de Bustros A, Ihle J N, Nelkin B D, Baylin S B (1987). Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci USA, 84(16): 5923–5927

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olsen C L, Gardie B, Yaswen P, Stampfer M R (2002). Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene, 21(41): 6328–6339

    Article  PubMed  CAS  Google Scholar 

  • Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 286(5443): 1374–1377

    Article  PubMed  Google Scholar 

  • Pagès G, Lenormand P, L’Allemain G, Chambard J C, Meloche S, Pouysségur J (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA, 90(18): 8319–8323

    Article  PubMed Central  PubMed  Google Scholar 

  • Park J I, Powers J F, Tischler A S, Strock C J, Ball D W, Nelkin B D (2005b). GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nf1-heterozygous knockout mice. Exp Cell Res, 303(1): 79–88

    PubMed  CAS  Google Scholar 

  • Park J I, Strock C J, Ball D W, Nelkin B D (2003). The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrineparacrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol, 23(2): 543–554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Park J I, Strock C J, Ball DW, Nelkin B D (2005a). Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine, 29(3): 125–134

    Article  PubMed  CAS  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu B E, Karandikar M, Berman K, Cobb M H (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 22(2): 153–183

    PubMed  CAS  Google Scholar 

  • Pinchot S N, Kunnimalaiyaan M, Sippel R S, Chen H (2009). Medullary thyroid carcinoma: targeted therapies and future directions. J Oncol, 2009: 183031

    Article  PubMed Central  PubMed  Google Scholar 

  • Pritchard C A, Samuels M L, Bosch E, McMahon M (1995). Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical propertie s in NIH 3T3 cells. Mol Cell Biol, 15(11): 6430–6442

    PubMed Central  PubMed  CAS  Google Scholar 

  • Radtke S, Milanovic M, Rossé C, De Rycker M, Lachmann S, Hibbert A, Kermorgant S, Parker P J (2013). ERK2 but not ERK1 mediates HGF-induced motility in non-small cell lung carcinoma cell lines. J Cell Sci, 126(Pt 11): 2381–2391

    Article  PubMed  CAS  Google Scholar 

  • Ravi R K, McMahon M, Yangang Z, Williams J R, Dillehay L E, Nelkin B D, Mabry M (1999b). Raf-1-induced cell cycle arrest in LNCaP human prostate cancer cells. J Cell Biochem, 72(4): 458–469

    Article  PubMed  CAS  Google Scholar 

  • Ravi R K, Thiagalingam A, Weber E, McMahon M, Nelkin B D, Mabry M (1999a). Raf-1 causes growth suppression and alteration of neuroendocrine markers in DMS53 human small-cell lung cancer cells. Am J Respir Cell Mol Biol, 20(4): 543–549

    Article  PubMed  CAS  Google Scholar 

  • Ravi R K, Weber E, McMahon M, Williams J R, Baylin S, Mal A, Harter M L, Dillehay L E, Claudio P P, Giordano A, Nelkin B D, Mabry M (1998). Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest, 101(1): 153–159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robbins D J, Zhen E, Owaki H, Vanderbilt C A, Ebert D, Geppert T D, Cobb M H (1993). Regulation and properties of extracellular signalregulated protein kinases 1 and 2 in vitro. J Biol Chem, 268(7): 5097–5106

    PubMed  CAS  Google Scholar 

  • Roberts P J, Der C J (2007). Targeting the Raf-MEK-ERK mitogenactivated protein kinase cascade for the treatment of cancer. Oncogene, 26(22): 3291–3310

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez J, Calvo F, González J M, Casar B, Andrés V, Crespo P (2010). ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. J Cell Biol, 191(5): 967–979

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez J, Crespo P (2011). Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal, 4(196): re3

    PubMed  Google Scholar 

  • Roper E, Weinberg W, Watt F M, Land H (2001). p19ARF-independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Rep, 2(2): 145–150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roskoski R Jr (2012). ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res, 66(2): 105–143

    Article  PubMed  CAS  Google Scholar 

  • Rossomando A J, Wu J, Michel H, Shabanowitz J, Hunt D F, Weber MJ, Sturgill T W (1992). Identification of Tyr-185 as the site of tyrosine autophosphorylation of recombinant mitogen-activated protein kinase p42mapk. Proc Natl Acad Sci USA, 89(13): 5779–5783

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saba-El-Leil M K, Vella F D, Vernay B, Voisin L, Chen L, Labrecque N, Ang S L, Meloche S (2003). An essential function of the mitogenactivated protein kinase Erk2 in mouse trophoblast development. EMBO Rep, 4(10): 964–968

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Samuels ML, Weber MJ, Bishop JM, McMahon M (1993). Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol Cell Biol, 13(10): 6241–6252

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schaeffer H J, Catling A D, Eblen S T, Collier L S, Krauss A, Weber MJ (1998). MP1: a MEK binding partner that enhances enzyma tic activation of the MAP kinase cascade. Science, 281(5383): 1668–1671

    Article  PubMed  CAS  Google Scholar 

  • Scholl F A, Dumesic P A, Barragan D I, Harada K, Charron J, Khavari P A (2009). Selective role for Mek1 but not Mek2 in the induction of epidermal neoplasia. Cancer Res, 69(9): 3772–3778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Serrano M, Lin A W, McCurrach M E, Beach D, Lowe S W (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5): 593–602

    Article  PubMed  CAS  Google Scholar 

  • Shapiro P S, Whalen A M, Tolwinski N S, Wilsbacher J, Froelich-Ammon S J, Garcia M, Osheroff N, Ahn N G (1999). Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol Cell Biol, 19(5): 3551–3560

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shaul Y D, Gibor G, Plotnikov A, Seger R (2009). Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade. Genes Dev, 23(15): 1779–1790

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shaul Y D, Seger R (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta, 1773(8): 1213–1226

    Article  PubMed  CAS  Google Scholar 

  • Shin J, Yang J, Lee J C, Baek K H (2013). Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence. Cell Signal, 25(12): 2540–2547

    Article  PubMed  CAS  Google Scholar 

  • Shin S, Dimitri C A, Yoon S O, Dowdle W, Blenis J (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell, 38(1): 114–127

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sippel R S, Carpenter J E, Kunnimalaiyaan M, Lagerholm S, Chen H (2003). Raf-1 activation suppresses neuroendocrine marker and hormone levels in human gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol, 285(2): G245–G254

    PubMed  CAS  Google Scholar 

  • Starenki D, Singh N K, Jensen D R, Peterson F C, Park J I (2013). Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice. Cancer Lett, 339(1): 144–151

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Unsicker K (2010). ERK and cell death: ERK1/2 in neuronal death. FEBS J, 277: 22–29

    Article  PubMed  CAS  Google Scholar 

  • Takahashi C, Contreras B, Iwanaga T, Takegami Y, Bakker A, Bronson R T, Noda M, Loda M, Hunt J L, Ewen M E (2006). Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet, 38(1): 118–123

    Article  PubMed  CAS  Google Scholar 

  • Taylor J R, Lehmann B D, Chappell W H, Abrams S L, Steelman L S, McCubrey J A (2011). Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget, 2(8): 610–626

    PubMed Central  PubMed  Google Scholar 

  • Vaccaro A, Chen H, Kunnimalaiyaan M (2006). In-vivo activation of Raf-1 inhibits tumor growth and development in a xenograft model of human medullary thyroid cancer. Anticancer Drugs, 17(7): 849–853

    Article  PubMed  CAS  Google Scholar 

  • Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol, 5(5): 14

    Article  PubMed Central  PubMed  Google Scholar 

  • Voisin L, Julien C, Duhamel S, Gopalbhai K, Claveau I, Saba-El-Leil M K, Rodrigue-Gervais I G, Gaboury L, Lamarre D, Basik M, Meloche S (2008). Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer, 8(1): 337

    Article  PubMed Central  PubMed  Google Scholar 

  • Voisin L, Saba-El-Leil M K, Julien C, Frémin C, Meloche S (2010). Genetic demonstration of a redundant role of extracellular signalregulated kinase 1 (ERK1) and ERK2 mitogen-activated protein kinases in promoting fibroblast proliferation. Mol Cell Biol, 30(12): 2918–2932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • von Thun A, Birtwistle M, Kalna G, Grindlay J, Strachan D, Kolch W, von Kriegsheim A, Norman J C (2012). ERK2 drives tumour cell migration in three-dimensional microenvironments by suppressing expression of Rab17 and liprin-β2. J Cell Sci, 125(Pt 6): 1465–1477

    Article  Google Scholar 

  • Wood K W, Qi H, D’Arcangelo G, Armstrong R C, Roberts T M, Halegoua S (1993). The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc Natl Acad Sci USA, 90(11): 5016–5020

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol, 17(9): 5598–5611

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wortzel I, Seger R (2011). The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer, 2(3): 195–209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu P K, Hong S K, Veeranki S, Karkhanis M, Starenki D, Plaza J A, Park J I (2013). A mortalin/HSPA9-mediated switch in tumorsuppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol, 33(20): 4051–4067

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu X, Noh S J, Zhou G, Dixon J E, Guan K L (1996). Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem, 271(6): 3265–3271

    Article  PubMed  CAS  Google Scholar 

  • Yoon S, Seger R (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 24(1): 21–44

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop J M (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev, 12(19): 2997–3007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-In Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JI. Growth arrest signaling of the Raf/MEK/ERK pathway in cancer. Front. Biol. 9, 95–103 (2014). https://doi.org/10.1007/s11515-014-1299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1299-x

Keywords

Navigation