Skip to main content
Log in

Novel functions of GABA signaling in adult neurogenesis

  • Review
  • Published:
Frontiers in Biology

Abstract

Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2Cl co-transporter NKCC1 driving Cl influx and neuron-specific K+/Cl co-transporter KCC2 driving Cl efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and new-born neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J, Fukuda A, Luhmann H J, Kilb W (2007). Kinetic properties of Cl uptake mediated by Na+-dependent K+-2Cl cotransport in immature rat neocortical neurons. J Neurosci, 27(32): 8616–8627

    PubMed  CAS  Google Scholar 

  • Aguado F, Carmona M A, Pozas E, Aguiló A, MartÍnez-Guijarro F J, Alcantara S, Borrell V, Yuste R, Ibañez C F, Soriano E (2003). BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl cotransporter KCC2. Development, 130(7): 1267–1280

    PubMed  CAS  Google Scholar 

  • Altman J (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol, 137(4): 433–457

    PubMed  CAS  Google Scholar 

  • Altman J, Das G D (1966). Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol, 126(3): 337–389

    PubMed  CAS  Google Scholar 

  • Andäng M, Hjerling-Leffler J, Moliner A, Lundgren T K, Castelo-Branco G, Nanou E, Pozas E, Bryja V, Halliez S, Nishimaru H, Wilbertz J, Arenas E, Koltzenburg M, Charnay P, El Manira A, Ibañez C F, Ernfors P (2008). Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature, 451(7177): 460–464

    PubMed  Google Scholar 

  • Becker L, Peterson J, Kulkarni S, Pasricha P J (2013). Ex vivo neurogenesis within enteric ganglia occurs in a PTEN dependent manner. PLoS ONE, 8(3): e59452

    PubMed  CAS  Google Scholar 

  • Benarroch E E (2013). Cation-chloride cotransporters in the nervous system: general features and clinical correlations. Neurology, 80(8): 756–763

    PubMed  Google Scholar 

  • Binder S, Baier P C, Mölle M, Inostroza M, Born J, Marshall L (2012). Sleep enhances memory consolidation in the hippocampusdependent object-place recognition task in rats. Neurobiol Learn Mem, 97(2): 213–219

    PubMed  Google Scholar 

  • Bowery N G, Hill D R, Hudson A L, Doble A, Middlemiss D N, Shaw J, Turnbull M (1980). (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283(5742): 92–94

    PubMed  CAS  Google Scholar 

  • Chamma I, Chevy Q, Poncer J C, Lévi S (2012). Role of the neuronal KCl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front Cell Neurosci, 6: 5

    PubMed  CAS  Google Scholar 

  • Chater T E, Goda Y (2013). CA3 mossy fiber connections: giant synapses that gain control. Neuron, 77(1): 4–6

    PubMed  CAS  Google Scholar 

  • Cherubini E, Griguoli M, Safiulina V, Lagostena L (2011). The depolarizing action of GABA controls early network activity in the developing hippocampus. Mol Neurobiol, 43(2): 97–106

    PubMed  CAS  Google Scholar 

  • Clelland C D, Choi M, Romberg C, Clemenson G D Jr, Fragniere A, Tyers P, Jessberger S, Saksida L M, Barker R A, Gage F H, Bussey T J (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937): 210–213

    PubMed  CAS  Google Scholar 

  • Cohen E, Ivenshitz M, Amor-Baroukh V, Greenberger V, Segal M (2008). Determinants of spontaneous activity in networks of cultured hippocampus. Brain Res, 1235: 21–30

    PubMed  CAS  Google Scholar 

  • Cortes C, Galindo F, Galicia S, Cebada J, Flores A (2013). Excitatory actions of GABA in developing chick vestibular afferents: Effects on resting electrical activity. Synapse, 67(7): 374–381

    PubMed  CAS  Google Scholar 

  • Couillard-Després S (2013). Hippocampal neurogenesis and ageing. Curr Top Behav Neurosci, 15: 343–355

    PubMed  Google Scholar 

  • Couillard-Despres S, Iglseder B, Aigner L (2011). Neurogenesis, cellular plasticity and cognition: the impact of stem cells in the adult and aging brain-a mini-review. Gerontology, 57(6): 559–564

    PubMed  Google Scholar 

  • Cryan J F, Slattery D A (2010). GABAB receptors and depression. Current status. Adv Pharmacol, 58: 427–451

    CAS  Google Scholar 

  • Cserép C, Szabadits E, Szőnyi A, Watanabe M, Freund T F, Nyiri G (2012). NMDA receptors in GABAergic synapses during postnatal development. PLoS ONE, 7(5): e37753

    PubMed  Google Scholar 

  • Curtis M A, Low V F, Faull R L (2012). Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol, 72(7): 990–1005

    PubMed  Google Scholar 

  • Daynac M, Chicheportiche A, Pineda J R, Gauthier L R, Boussin F D, Mouthon M A (2013). Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res (Amst), 11(1): 516–528

    CAS  Google Scholar 

  • Delpire E (2000). Cation-chloride cotransporters in neuronal communication. News Physiol Sci, 15: 309–312

    PubMed  CAS  Google Scholar 

  • Dieni C V, Chancey J H, Overstreet-Wadiche L S (2012). Dynamic functions of GABA signaling during granule cell maturation. Front Neural Circuits, 6: 113

    PubMed  Google Scholar 

  • Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146–1158

    PubMed  CAS  Google Scholar 

  • Dzhala V I, Talos D M, Sdrulla D A, Brumback A C, Mathews G C, Benke T A, Delpire E, Jensen F E, Staley K J (2005). NKCC1 transporter facilitates seizures in the developing brain. Nat Med, 11(11): 1205–1213

    PubMed  CAS  Google Scholar 

  • Eisch A J, Petrik D (2012). Depression and hippocampal neurogenesis: a road to remission? Science, 338(6103): 72–75

    PubMed  CAS  Google Scholar 

  • Erlander M G, Tillakaratne N J, Feldblum S, Patel N, Tobin A J (1991). Two genes encode distinct glutamate decarboxylases. Neuron, 7(1): 91–100

    PubMed  CAS  Google Scholar 

  • Espinosa J, Rocha A, Nunes F, Costa M S, Schein V, Kazlauckas V, Kalinine E, Souza D O, Cunha R A, Porciúncula L O (2013). Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J Alzheimers Dis, 34(2): 509–518

    PubMed  CAS  Google Scholar 

  • Faigle R, Song H (2013). Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta, 1830(2): 2435–2448

    PubMed  CAS  Google Scholar 

  • Feierstein C E (2012). Linking adult olfactory neurogenesis to social behavior. Front Neurosci, 6: 173

    PubMed  Google Scholar 

  • Feierstein C E, Lazarini F, Wagner S, Gabellec M M, de Chaumont F, Olivo-Marin J C, Boussin F D, Lledo P M, Gheusi G (2010). Disruption of adult neurogenesis in the olfactory bulb affects social interaction but not maternal behavior. Front Behav Neurosci, 4: 176

    PubMed  Google Scholar 

  • Fernandes F S, de Souza A S, do Carmo M, Boaventura G T (2011). Maternal intake of flaxseed-based diet (Linum usitatissimum) on hippocampus fatty acid profile: implications for growth, locomotor activity and spatial memory. Nutrition, 27(10): 1040–1047

    PubMed  CAS  Google Scholar 

  • Fernando R N, Eleuteri B, Abdelhady S, Nussenzweig A, Andäng M, Ernfors P (2011). Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci USA, 108(14): 5837–5842

    PubMed  CAS  Google Scholar 

  • Fiumelli H, Woodin M A (2007). Role of activity-dependent regulation of neuronal chloride homeostasis in development. Curr Opin Neurobiol, 17(1): 81–86

    PubMed  CAS  Google Scholar 

  • Foster P P, Rosenblatt K P, Kuljiš R O (2011). Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease. Front Neurol, 2: 28

    PubMed  CAS  Google Scholar 

  • Fotuhi M, Do D, Jack C (2012). Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol, 8(4): 189–202

    PubMed  CAS  Google Scholar 

  • GarcÍa-Verdugo J M, Ferrón S, Flames N, Collado L, Desfilis E, Font E (2002). The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull, 57(6): 765–775

    PubMed  Google Scholar 

  • Garrett L, Lie D C, Hrabé de Angelis M, Wurst W, Hölter S M (2012). Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. BMC Neurosci, 13(1): 61

    PubMed  Google Scholar 

  • Gershon M D (2011). Behind an enteric neuron there may lie a glial cell. J Clin Invest, 121(9): 3386–3389

    PubMed  CAS  Google Scholar 

  • Glasper E R, Gould E (2013). Sexual experience restores age-related decline in adult neurogenesis and hippocampal function. Hippocampus: n/a Gonzalez-Perez O (2012). Neural stem cells in the adult human brain. Biol Biomed Rep, 2(1): 59–69

    Google Scholar 

  • Goto K, Kato G, Kawahara I, Luo Y, Obata K, Misawa H, Ishikawa T, Kuniyasu H, Nabekura J, Takaki M (2013). In vivo imaging of enteric neurogenesis in the deep tissue of mouse small intestine. PLoS ONE, 8(1): e54814

    PubMed  CAS  Google Scholar 

  • Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013). Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci, 33(14): 6170–6180

    PubMed  CAS  Google Scholar 

  • Huang Y, Wang J J, Yung W H (2013). Coupling Between GABA-A Receptor and Chloride Transporter Underlies Ionic Plasticity in Cerebellar Purkinje Neurons. Cerebellum, 12(3): 328–330

    PubMed  CAS  Google Scholar 

  • Huehnchen P, Prozorovski T, Klaissle P, Lesemann A, Ingwersen J, Wolf S A, Kupsch A, Aktas O, Steiner B (2011). Modulation of adult hippocampal neurogenesis during myelin-directed autoimmune neuroinflammation. Glia, 59(1): 132–142

    PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Kageyama R (2009). Continuous neurogenesis in the adult brain. Dev Growth Differ, 51(3): 379–386

    PubMed  Google Scholar 

  • Ivakine E A, Acton B A, Mahadevan V, Ormond J, Tang M, Pressey J C, Huang M Y, Ng D, Delpire E, Salter M W, Woodin M A, McInnes R R (2013). Neto2 is a KCC2 interacting protein required for neuronal Cl-regulation in hippocampal neurons. Proc Natl Acad Sci USA, 110(9): 3561–3566

    PubMed  CAS  Google Scholar 

  • Joseph NM, He S, Quintana E, Kim Y G, Núñez G, Morrison S J (2011). Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest, 121(9): 3398–3411

    PubMed  CAS  Google Scholar 

  • Jun H, Mohammed Qasim Hussaini S, Rigby M J, Jang M H (2012). Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast, 2012: 854285

    PubMed  Google Scholar 

  • Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001). The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience, 104(4): 933–946

    PubMed  CAS  Google Scholar 

  • Keller M, Douhard Q, Baum M J, Bakker J (2006). Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice. Chem Senses, 31(4): 315–323

    PubMed  Google Scholar 

  • Kempermann G (2011). Neurogenesis in the hippocampus. In: Adult neurogenesis 2:Stem cells and neuronal development in the adult brain. Oxford University Press, New York

    Google Scholar 

  • Khazipov R, Esclapez M, Caillard O, Bernard C, Khalilov I, Tyzio R, Hirsch J, Dzhala V, Berger B, Ben-Ari Y (2001). Early development of neuronal activity in the primate hippocampus in utero. J Neurosci, 21(24): 9770–9781

    PubMed  CAS  Google Scholar 

  • Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064

    PubMed  CAS  Google Scholar 

  • Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, Pachnis V (2011). Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest, 121(9): 3412–3424

    PubMed  CAS  Google Scholar 

  • Lee C, Hu J, Ralls S, Kitamura T, Loh Y P, Yang Y, Mukouyama Y S, Ahn S (2012). The molecular profiles of neural stem cell niche in the adult subventricular zone. PLoS ONE, 7(11): e50501

    PubMed  CAS  Google Scholar 

  • Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621

    PubMed  Google Scholar 

  • Lee M C, Inoue K, Okamoto M, Liu Y F, Matsui T, Yook J S, Soya H (2013). Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running. Neurosci Lett, 537: 6–10

    PubMed  CAS  Google Scholar 

  • Li J, Tang Y, Cai D (2012). IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol, 14(10): 999–1012

    PubMed  CAS  Google Scholar 

  • Lin D Y, Zhang S Z, Block E, Katz L C (2005). Encoding social signals in the mouse main olfactory bulb. Nature, 434(7032): 470–477

    PubMed  CAS  Google Scholar 

  • Liu X, Wang Q, Haydar T F, Bordey A (2005). Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci, 8(9): 1179–1187

    PubMed  CAS  Google Scholar 

  • Lovatel G A, Elsner V R, Bertoldi K, Vanzella C, Moysés F S, Vizuete A, Spindler C, Cechinel L R, Netto C A, Muotri A R, Siqueira I R (2013). Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem, 101: 94–102

    PubMed  CAS  Google Scholar 

  • Ludwig A, Uvarov P, Pellegrino C, Thomas-Crusells J, Schuchmann S, Saarma M, Airaksinen M S, Rivera C (2011a). Neurturin evokes MAPK-dependent upregulation of Egr4 and KCC2 in developing neurons. Neural Plast, 2011: 1–8

    PubMed  Google Scholar 

  • Ludwig A, Uvarov P, Soni S, Thomas-Crusells J, Airaksinen M S, Rivera C (2011b). Early growth response 4 mediates BDNF induction of potassium chloride cotransporter 2 transcription. J Neurosci, 31(2): 644–649

    PubMed  CAS  Google Scholar 

  • Mak G K, Weiss S (2010). Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nat Neurosci, 13(6): 753–758

    PubMed  CAS  Google Scholar 

  • Mao Y, Ge X, Frank C L, Madison J M, Koehler A N, Doud M K, Tassa C, Berry E M, Soda T, Singh K K, Biechele T, Petryshen T L, Moon R T, Haggarty S J, Tsai L H (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell, 136(6): 1017–103

    PubMed  CAS  Google Scholar 

  • Markwardt S J, Wadiche J I, Overstreet-Wadiche L S (2009). Inputspecific GABAergic signaling to newborn neurons in adult dentate gyrus. J Neurosci, 29(48): 15063–15072

    PubMed  CAS  Google Scholar 

  • McDermott K W, Lantos P L (1990). Cell proliferation in the subependymal layer of the postnatal marmoset, Callithrix jacchus. Brain Res Dev Brain Res, 57(2): 269–277

    PubMed  CAS  Google Scholar 

  • McEown K, Treit D (2010). Inactivation of the dorsal or ventral hippocampus with muscimol differentially affects fear and memory. Brain Res, 1353: 145–151

    PubMed  CAS  Google Scholar 

  • McNay D E, Briançon N, Kokoeva M V, Maratos-Flier E, Flier J S (2012). Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest, 122(1): 142–152

    PubMed  CAS  Google Scholar 

  • Metzger M (2010). Neurogenesis in the enteric nervous system. Arch Ital Biol, 148(2): 73–83

    PubMed  Google Scholar 

  • Ming G L, Song H (2009). DISC1 partners with GSK3beta in neurogenesis. Cell, 136(6): 990–992

    PubMed  CAS  Google Scholar 

  • Misane I, Kruis A, Pieneman A W, Ögren S O, Stiedl O (2013). GABA (A) receptor activation in the CA1 area of the dorsal hippocampus impairs consolidation of conditioned contextual fear in C57BL/6J mice. Behav Brain Res, 238: 160–169

    PubMed  CAS  Google Scholar 

  • Moss J, Toni N (2013). A circuit-based gatekeeper for adult neural stem cell proliferation: Parvalbumin-expressing interneurons of the dentate gyrus control the activation and proliferation of quiescent adult neural stem cells. Bioessays, 35(1): 28–33

    PubMed  CAS  Google Scholar 

  • Mu Y, Gage F H (2011). Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener, 6(1): 85

    PubMed  Google Scholar 

  • Nakashiba T, Cushman J D, Pelkey K A, Renaudineau S, Buhl D L, McHugh T J, Rodriguez Barrera V, Chittajallu R, Iwamoto K S, McBain C J, Fanselow M S, Tonegawa S (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1): 188–201

    PubMed  CAS  Google Scholar 

  • Niibori Y, Yu T S, Epp J R, Akers K G, Josselyn S A, Frankland P W (2012). Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat Commun, 3: 1253

    PubMed  Google Scholar 

  • Owens D F, Kriegstein A R (2002). Is there more to GABA than synaptic inhibition? Nat Rev Neurosci, 3(9): 715–727

    PubMed  CAS  Google Scholar 

  • Pavlov I, Riekki R, Taira T (2004). Synergistic action of GABA-A and NMDA receptors in the induction of long-term depression in glutamatergic synapses in the newborn rat hippocampus. Eur J Neurosci, 20(11): 3019–3026

    PubMed  Google Scholar 

  • Pearce J M (2001). Ammon’s horn and the hippocampus. J Neurol Neurosurg Psychiatry, 71(3): 351

    PubMed  CAS  Google Scholar 

  • Penfield W, Milner B (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry, 79(5): 475–497

    PubMed  CAS  Google Scholar 

  • Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730

    PubMed  CAS  Google Scholar 

  • Platel J C, Dave K A, Bordey A (2008). Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol, 586(16): 3739–3743

    PubMed  CAS  Google Scholar 

  • Platel J C, Stamboulian S, Nguyen I, Bordey A (2010). Neurotransmitter signaling in postnatal neurogenesis: The first leg. Brain Res Brain Res Rev, 63(1–2): 60–71

    CAS  Google Scholar 

  • Raimondo J V, Markram H, Akerman C J (2012). Short-term ionic plasticity at GABAergic synapses. Front Synaptic Neurosci, 4: 5

    PubMed  CAS  Google Scholar 

  • Recinto P, Samant A R, Chavez G, Kim A, Yuan C J, Soleiman M, Grant Y, Edwards S, Wee S, Koob G F, George O, Mandyam C D (2012). Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology, 37(5): 1275–1287

    PubMed  CAS  Google Scholar 

  • Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch K P (2006). Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry, 11(5): 514–522

    PubMed  CAS  Google Scholar 

  • Rinehart J, Vázquez N, Kahle K T, Hodson C A, Ring A M, Gulcicek E E, Louvi A, Bobadilla N A, Gamba G, Lifton R P (2011). WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters. J Biol Chem, 286(34): 30171–30180

    PubMed  CAS  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen M S, Voipio J, Kaila K, Saarma M (2002). BDNF-induced TrkB activation down-regulates the K+- Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion. J Cell Biol, 159(5): 747–752

    PubMed  CAS  Google Scholar 

  • Ruiz A J, Kullmann D M (2012). Ionotropic receptors at hippocampal mossy fibers: roles in axonal excitability, synaptic transmission, and plasticity. Front Neural Circuits, 6: 112

    PubMed  Google Scholar 

  • Saffrey M J (2013). Cellular changes in the enteric nervous system during ageing. Dev Biol

    Google Scholar 

  • Sahay A, Scobie K N, Hill A S, O’Carroll C M, Kheirbek M A, Burghardt N S, Fenton A A, Dranovsky A, Hen R (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472(7344): 466–470

    PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634): 805–809

    PubMed  CAS  Google Scholar 

  • Saxe M D, Battaglia F, Wang JW, Malleret G, David D J, Monckton J E, Garcia A D, Sofroniew M V, Kandel E R, Santarelli L, Hen R, Drew M R (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103(46): 17501–17506

    PubMed  CAS  Google Scholar 

  • Scoville W B, Milner B (1957). Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry, 20(1): 11–21

    PubMed  CAS  Google Scholar 

  • Scullin C S, Partridge L D (2012). Modulation by pregnenolone sulfate of filtering properties in the hippocampal trisynaptic circuit. Hippocampus, 22(11): 2184–2198

    PubMed  CAS  Google Scholar 

  • Sheridan G K, Pickering M, Twomey C, Moynagh P N, O’Connor J J, Murphy K J (2007). NF-κB activity in distinct neural subtypes of the rat hippocampus: Influence of time and GABA antagonism in acute slice preparations. Learn Mem, 14(8): 525–532

    PubMed  CAS  Google Scholar 

  • Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C, Cross J C, Weiss S (2003). Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science, 299(5603): 117–120

    PubMed  CAS  Google Scholar 

  • Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150–154

    PubMed  CAS  Google Scholar 

  • Speisman R B, Kumar A, Rani A, Foster T C, Ormerod B K (2013). Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun, 28: 25–43

    PubMed  CAS  Google Scholar 

  • Squire L R (2009). The legacy of patient H.M. for neuroscience. Neuron, 61(1): 6–9

    PubMed  CAS  Google Scholar 

  • Suijo K, Inoue S, Ohya Y, Odagiri Y, Takamiya T, Ishibashi H, Itoh M, Fujieda Y, Shimomitsu T (2012). Resistance exercise enhances cognitive function in mouse. Int J Sports Med

    Google Scholar 

  • Suwabe T, Mistretta CM, Bradley RM (2013). Excitatory and inhibitory synaptic function in the rostral nucleus of the solitary tract in embryonic rat. Brain Res, 1490: 117–127

    PubMed  CAS  Google Scholar 

  • Szabadits E, Cserép C, Szonyi A, Fukazawa Y, Shigemoto R, Watanabe M, Itohara S, Freund T F, Nyiri G (2011). NMDA receptors in hippocampal GABAergic synapses and their role in nitric oxide signaling. J Neurosci, 31(16): 5893–5904

    PubMed  CAS  Google Scholar 

  • Tepavčević V, Lazarini F, Alfaro-Cervello C, Kerninon C, Yoshikawa K, GarcÍa-Verdugo J M, Lledo P M, Nait-Oumesmar B, Baron-Van Evercooren A (2011). Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Invest, 121(12): 4722–4734

    PubMed  Google Scholar 

  • Ueda S, Yoshimoto K, Kadowaki T, Hirata K, Sakakibara S (2010). Improved learning in microencephalic rats. Congenit Anom (Kyoto), 50(1): 58–63

    Google Scholar 

  • Valeeva G, Valiullina F, Khazipov R (2013). Excitatory actions of GABA in the intact neonatal rodent hippocampus in vitro. Front Cell Neurosci, 7: 20

    PubMed  CAS  Google Scholar 

  • van den Berge S A, van Strien M E, Korecka J A, Dijkstra A A, Sluijs J A, Kooijman L, Eggers R, De Filippis L, Vescovi A L, Verhaagen J, van de Berg W D, Hol E M (2011). The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain, 134(Pt 11): 3249–3263

    PubMed  Google Scholar 

  • Wang C, Shimizu-Okabe C, Watanabe K, Okabe A, Matsuzaki H, Ogawa T, Mori N, Fukuda A, Sato K (2002). Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain. Brain Res Dev Brain Res, 139(1): 59–66

    PubMed  CAS  Google Scholar 

  • Wang D D, Kriegstein A R (2008). GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J Neurosci, 28(21): 5547–5558

    PubMed  CAS  Google Scholar 

  • Winner B, Kohl Z, Gage F H (2011). Neurodegenerative disease and adult neurogenesis. Eur J Neurosci, 33(6): 1139–1151

    PubMed  Google Scholar 

  • Wojtowicz J M (2012). Adult neurogenesis. From circuits to models. Behav Brain Res, 227(2): 490–496

    PubMed  Google Scholar 

  • Zhang Y, Liu J, Yao S, Li F, Xin L, Lai M, Bracchi-Ricard V, Xu H, Yen W, Meng W, Liu S, Yang L, Karmally S, Liu J, Zhu H, Gordon J, Khalili K, Srinivasan S, Bethea J R, Mo X, Hu W (2012). Nuclear factor kappa B signaling initiates early differentiation of neural stem cells. Stem Cells, 30(3): 510–524

    PubMed  CAS  Google Scholar 

  • Zhu L, Polley N, Mathews G C, Delpire E (2008). NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus. Epilepsy Res, 79(2–3): 201–212

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontes, A., Zhang, Y. & Hu, W. Novel functions of GABA signaling in adult neurogenesis. Front. Biol. 8, 496–507 (2013). https://doi.org/10.1007/s11515-013-1270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1270-2

Keywords

Navigation