Skip to main content
Log in

The perinucleolar compartment associates with malignancy

  • Review
  • Published:
Frontiers in Biology

Abstract

The perinucleolar compartment (PNC) is a unique nuclear substructure, forming predominantly in cancer cells both in vitro and in vivo. PNC prevalence (percentage of cells containing at least one PNC) has been found to positively correlate with disease progression in several cancers (breast, ovarian, and colon). While there is a clear association between PNCs and cancer, the molecular function of the PNC remains unclear. Here we summarize the current understanding of the association of PNCs with cancer and its possible functions in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman S (1990). Ribonuclease P. Postscript. J Biol Chem, 265(33): 20053–20056

    CAS  Google Scholar 

  • Anderson J T, Wilson S M, Datar K V, Swanson M S, (1993). NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol, 13(5): 2730–2741

    PubMed  CAS  Google Scholar 

  • Apponi L H, Corbett A H, Pavlath G K (2011). RNA-binding proteins and gene regulation in myogenesis. Trends Pharmacol Sci, 32(11): 652–658

    Article  PubMed  CAS  Google Scholar 

  • Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco P, Furger A, Wollerton M, Smith C, Moreira A, Proudfoot N (2004). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol, 24(10): 4174–4183

    Article  PubMed  CAS  Google Scholar 

  • Charlet B N, Savkur R S, Singh G, Philips A V, Grice E A, Cooper T A (2002). Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell, 10(1): 45–53

    Article  Google Scholar 

  • Chen M, Zhang J, Manley J L (2010). Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res, 70(22): 8977–8980

    Article  PubMed  CAS  Google Scholar 

  • Clayton D A (1994). A nuclear function for RNase MRP. Proc Natl Acad Sci USA, 91(11): 4615–4617

    Article  PubMed  CAS  Google Scholar 

  • Esakova O, Krasilnikov A S (2010). Of proteins and RNA: the RNase P/MRP family. RNA, 16(9): 1725–1747

    Article  PubMed  CAS  Google Scholar 

  • Esakova O, Perederina A, Quan C, Berezin I, Krasilnikov A S (2011). Substrate recognition by ribonucleoprotein ribonuclease MRP. RNA, 17(2): 356–364

    Article  PubMed  CAS  Google Scholar 

  • Fox A H, Lamond A I (2010). Paraspeckles. Cold Spring Harb Perspect Biol, 2(7): a000687

    Article  PubMed  Google Scholar 

  • Frank R, Hargreaves R (2003). Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov, 2(7): 566–580

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Blanco M A, Jamison S F, Sharp P A (1989). Identification and purification of a 62000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev, 3(12A): 1874–1886

    Article  PubMed  CAS  Google Scholar 

  • Ghetti A, Pinol-Roma S, Michael W M, Morandi C, Dreyfuss G (1992). hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res, 20(14): 3671–3678

    Article  PubMed  CAS  Google Scholar 

  • Gromak N, Rideau A, Southby J, Scadden A D J, Gooding C, Hüttelmaier S, Singer R H, Smith CWJ (2003). The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J, 22(23): 6356–6364

    Article  PubMed  CAS  Google Scholar 

  • Hall M P, Huang S, Black D L (2004). Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell, 15(2): 774–786

    Article  PubMed  CAS  Google Scholar 

  • Hellen C U, Pestova T V, Litterst M, Wimmer E (1994). The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5′ nontranslated region. J Virol, 68(2): 941–950

    PubMed  CAS  Google Scholar 

  • Ho T H, Bundman D, Armstrong D L, Cooper T A (2005). Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet, 14(11): 1539–1547

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Deerinck T J, Ellisman MH, Spector D L (1997). The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol, 137(5): 965–974

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Deerinck T J, Ellisman M H, Spector D L (1998). The perinucleolar compartment and transcription. J Cell Biol, 143(1): 35–47

    Article  PubMed  CAS  Google Scholar 

  • Huttelmaier S, Illenberger S, Grosheva I, Rudiger M, Singer R H, and Jockusch B M (2001). Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. J Cell Biol, 155(5): 775–786

    Article  PubMed  CAS  Google Scholar 

  • Jackson D A, Hassan A B, Errington P R (1993). Visualization of focal sites of transcription within human nuclei. EMBO J, 12: 1059–1065

    PubMed  CAS  Google Scholar 

  • Jacobson M R, Cao L G, Wang Y L, Pederson T (1995). Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol, 131(6 Pt 2): 1649–1658

    Article  PubMed  CAS  Google Scholar 

  • Jarrous N (2002). Human ribonuclease P: subunits, function, and intranuclear localization. RNA, 8(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  • Jones K, Timchenko L, Timchenko N A (2012). The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev, 11(4): 442–449

    Article  PubMed  CAS  Google Scholar 

  • Kafasla P, Mickleburgh I, Llorian M, Coelho M, Gooding C, Cherny D, Joshi A, Kotik-Kogan O, Curry S, Eperon I C, Jackson R J, Smith C WJ (2012). Defining the roles and interactions of PTB. Biochem Soc Trans, 40(4): 815–820

    Article  PubMed  CAS  Google Scholar 

  • Kamath R V, Leary D J, Huang S (2001). Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Mol Biol Cell, 12(12): 3808–3820

    Article  PubMed  CAS  Google Scholar 

  • Kamath R V, Thor A D, Wang C, Edgerton SM, Slusarczyk A, Leary D J, Wang J, Wiley E L, Jovanovic B, Wu Q, Nayar R, Kovarik P, Shi F, Huang S (2005). Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res, 65(1): 246–253

    PubMed  CAS  Google Scholar 

  • Kaminski A, Hunt S L, Patton J G, Jackson-Rna R J (1995). Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA, 1(9): 924–938

    PubMed  CAS  Google Scholar 

  • Lee B, Matera A G, Ward D C, Craft J (1996). Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA, 93(21): 11471–11476

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Norton J T, Witschi M A, Xu Q, Lou G, Wang C, H Appella D, Chen Z, Huang S (2011). Methoxyethylamino-numonafide is an efficacious and minimally toxic amonafide derivative in murine models of human cancer. Neoplasia, 13(5): 453–460

    PubMed  CAS  Google Scholar 

  • Lou H, Gagel R F, Berget SM (1996). An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev, 10(2): 208–219

    Article  PubMed  CAS  Google Scholar 

  • Lou H, Helfman D M, Gagel R F, Berget S M (1999). Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon. Mol Cell Biol, 19(1): 78–85

    PubMed  CAS  Google Scholar 

  • Mahadevan M S (2012). Myotonic dystrophy: is a narrow focus obscuring the rest of the field? Curr Opin Neurol, 25(5): 609–613

    Article  PubMed  CAS  Google Scholar 

  • Matera A G, Frey M R, Margelot K, Wolin S L (1995). A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol, 129(5): 1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Norton J T, Pollock C B, Wang C, Schink J C, Kim J J, Huang S (2008a). Perinucleolar compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer, 113(4): 861–869

    Article  PubMed  Google Scholar 

  • Norton J T, Titus S A, Dexter D, Austin C P, Zheng W, Huang S (2009a). Automated high-content screening for compounds that disassemble the perinucleolar compartment. J Biomol Screen, 14(9): 1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Norton J T, Wang C, Gjidoda A, Henry R W, Huang S (2009b). The perinucleolar compartment is directly associated with DNA. J Biol Chem, 284(7): 4090–4101

    Article  PubMed  CAS  Google Scholar 

  • Norton J T, Witschi M A, Luong L, Kawamura A, Ghosh S, Sharon Stack M, Sim E, Avram M J, Appella D H, Huang S (2008b). Synthesis and anticancer activities of 6-amino amonafide derivatives. Anticancer Drugs, 19(1): 23–36

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe R T, Mayeda A, Sadowski C L, Krainer A R, Spec-tor D L (1994). Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J Cell Biol, 124(3): 249–260

    Article  PubMed  Google Scholar 

  • Paillard L, Legagneux V, Osborne H B (2003). A functional deadenylation assay identifies human CUG-BP as a deadenylation factor. Biol Cell, 95(2): 107–113

    Article  PubMed  CAS  Google Scholar 

  • Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov A S (2010). Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J, 29(4): 761–769

    Article  PubMed  CAS  Google Scholar 

  • Perez I, Lin C H, Mcafee J, Patton J (1997). Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA, 3(7): 764–778

    PubMed  CAS  Google Scholar 

  • Pettaway C A, Pathak S, Greene G, Ramirez E, Wilson M R, Killion J J, Fidler I J (1996). Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res, 2(9): 1627–1636

    PubMed  CAS  Google Scholar 

  • Pianese G (1896). Beitrag zur histologie und aetiologie der carcinoma. Histologische und experimentelle untersuchungen. Beitr Pathol Anat Allgem Pathol, 142(1): 193

    Google Scholar 

  • Pickering B M, Mitchell S A, Evans J R, Willis A E (2003). Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res, 31(2): 639–646

    Article  PubMed  CAS  Google Scholar 

  • Pollock C, Daily K, Nguyen V T, Wang C, Lewandowska M A, Bensaude O, Huang S (2011). Characterization of MRP RNA-protein interactions within the perinucleolar compartment. Mol Biol Cell, 22(6): 858–866

    Article  PubMed  CAS  Google Scholar 

  • Savkur R S, Philips A V, Cooper T A (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet, 29(1): 40–47

    Article  PubMed  CAS  Google Scholar 

  • Sawicka K, Bushell M, Spriggs K A, Willis A E (2008). Polypyrimidinetract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans, 36(Pt 4): 641–647

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Agol V I, Andino R, Bayard F, Cavener D R, Chappell S A, Chen J J, Darlix J L, Dasgupta A, Donze O (2001). New ways of initiating translation in eukaryotes. Mol Cell Biol, 21(23): 8238–8246

    Article  PubMed  CAS  Google Scholar 

  • Slusarczyk A, Kamath R, Wang C, Anchel D, Pollock C, Lewandowska M A, Fitzpatrick T, Bazett-Jones D P, Huang S (2010). Structure and function of the perinucleolar compartment in cancer cells. Cold Spring Harb Symp Quant Biol, 75(0): 599–605

    Article  PubMed  CAS  Google Scholar 

  • Steinberg T H, Burgess R R (1992). Tagetitoxin inhibition of RNA polymerase III transcription results from enhanced pausing at discrete sites and is template-dependent. J Biol Chem, 267(28): 20204–20211

    PubMed  CAS  Google Scholar 

  • Steinberg T H, Mathews D E, Durbin R D, Burgess R R (1990). Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem, 265(1): 499–505

    PubMed  CAS  Google Scholar 

  • Timchenko L T, Miller J W, Timchenko N A, DeVore D R, Datar K V, Lin L, Roberts R, Caskey C T, Swanson MS (1996). Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res, 24(22): 4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Valcarcel J, Gebauer F (1997). Post-transcriptional regulation: the dawn of PTB. Curr Biol, 7(11): R705–R708

    Article  PubMed  CAS  Google Scholar 

  • Van Eenennaam H, Vogelzangs J H, Lugtenberg D, Van Den Hoogen F H J, Van Venrooij W J, Pruijn G J M (2002). Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis Rheum, 46(12): 3266–3272

    Article  PubMed  Google Scholar 

  • Wagner E J, Carstens R P, Garcia-Blanco M A (1999). A novel isoform ratio switch of the polypyrimidine tract binding protein. Electrophoresis, 20(4-5): 1082–1086

    Article  PubMed  CAS  Google Scholar 

  • Wagner E J, Garcia-Blanco M A (2002). RNAi-mediated PTB depletion leads to enhanced exon definition. Mol Cell, 10(4): 943–949

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Politz J C, Pederson T, Huang S (2003). RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell, 14(6): 2425–2435

    Article  PubMed  CAS  Google Scholar 

  • Wang J, and Pederson T (1990). A 62000 molecular weight spliceosome protein crosslinks to the intron polypyrimidine tract. Nucleic Acids Res, 18(20): 5995–6001

    Article  PubMed  CAS  Google Scholar 

  • Wansink D G, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993). Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol, 122(2): 283–293

    Article  PubMed  CAS  Google Scholar 

  • Witherell G W, Schultz-Witherell C S, Wimmer E C K A R D (1995). Cis-acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology, 214(2): 660–663

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Scott F, Fierke C A, Engelke D R (2002). EUKARYOTIC RIBONUCLEASE P: A Plurality of Ribonucleoprotein Enzymes. Annu Rev Biochem, 71(1): 165–189

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Lee J A, Kress T L, Mowry K L, Black D L (2003). Protein kinase A phosphorylation modulates transport of the polypyrimidine tractbinding protein. Proc Natl Acad Sci USA, 100(15): 8776–8781

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Liu H, Han K, Grabowski P J (2002). Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA, 8(5): 671–685

    Article  PubMed  CAS  Google Scholar 

  • Zwerger M, Ho C Y, Lammerding J (2011). Nuclear mechanics in disease. Annu Rev Biomed Eng, 13(1): 397–428

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Y., Wang, C. & Huang, S. The perinucleolar compartment associates with malignancy. Front. Biol. 8, 369–376 (2013). https://doi.org/10.1007/s11515-013-1265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1265-z

Keywords

Navigation