Skip to main content
Log in

ROS-mediated regulation of CXCR4 in cancer

  • Review
  • Published:
Frontiers in Biology

Abstract

Oxidative stress and the accumulation of reactive oxygen specie (ROS) play a role in cancer cells developing an advanced, phenotypic signature that associates with metastasis and progression. Increased ROS concentrations are involved in promoting cancer development and metastasis by inducing expression of oncogenes, suppressing activity of anti-survival molecules and by activating various cell survival and proliferation signaling pathways. Oxidative stress is higher in the epithelium of cancer patients than patients without the disease, and antioxidant trials are currently being explored as a therapeutic option. However, studies have shown that ROS increases expression of CXCR4 in cancer and immune cells. CXCR4 expression in tumors strongly correlates to metastasis and poor prognosis. Herein, we discuss an emerging relationship between ROS and CXCR4 in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammendola R, Mesuraca M, Russo T, Cimino F (1994). The DNA-binding efficiency of Sp1 is affected by redox changes. Eur J Biochem, 225(1): 483–489

    Article  PubMed  CAS  Google Scholar 

  • Balabanian K, Lagane B, Infantino S, Chow K Y, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005). The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem, 280(42): 35760–35766

    Article  PubMed  CAS  Google Scholar 

  • Busillo J M, Benovic J L (2007). Regulation of CXCR4 signaling. Biochim Biophys Acta, 1768(4): 952–963

    Article  PubMed  CAS  Google Scholar 

  • Chetram M A, Odero-Marah V, Hinton C V (2011). Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res, 9(1): 90–102

    Article  PubMed  CAS  Google Scholar 

  • Cho Y H, Shen J, Gammon M D, Zhang Y J, Wang Q, Gonzalez K, Xu X, Bradshaw P T, Teitelbaum S L, Garbowski G, Hibshoosh H, Neugut A I, Chen J, Santella R M (2012). Prognostic significance of gene-specific promoter hypermethylation in breast cancer patients. Breast Cancer Res Treat, 131(1): 197–205

    Article  PubMed  CAS  Google Scholar 

  • Circu M L, Aw T Y (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med, 48(6): 749–762

    Article  PubMed  CAS  Google Scholar 

  • Cook J A, Gius D, Wink D A, Krishna M C, Russo A, Mitchell J B (2004). Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol, 14(3): 259–266

    Article  PubMed  Google Scholar 

  • Cruz-Orengo L, Holman D W, Dorsey D, Zhou L, Zhang P, Wright M, McCandless E E, Patel J R, Luker G D, Littman D R, Russell J H, Klein R S (2011). CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med, 208(2): 327–339

    Article  PubMed  CAS  Google Scholar 

  • Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A, Kao WM, Battista M, Tesio M, Kollet O (2011). Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 25(8):1286–1296

    Article  PubMed  CAS  Google Scholar 

  • Davies K J (1993). Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans, 21(2): 346–353

    PubMed  CAS  Google Scholar 

  • Esposito F, Cuccovillo F, Morra F, Russo T, Cimino F (1995). DNA binding activity of the glucocorticoid receptor is sensitive to redox changes in intact cells. Biochim Biophys Acta, 1260(3): 308–314

    Article  PubMed  Google Scholar 

  • Fraga C G, Shigenaga M K, Park J W, Degan P, Ames B N (1990). Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA, 87(12): 4533–4537

    Article  PubMed  CAS  Google Scholar 

  • Galaris D, Skiada V, Barbouti A (2008). Redox signaling and cancer: the role of “labile” iron. Cancer Lett, 266(1): 21–29

    Article  PubMed  CAS  Google Scholar 

  • Gerard C, Rollins B J (2001). Chemokines and disease. Nat Immunol, 2(2): 108–115

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Rosenberger S F, Bowden G T (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20(11): 2063–2073

    Article  PubMed  CAS  Google Scholar 

  • Gupta S K, Lysko P G, Pillarisetti K, Ohlstein E, Stadel J M (1998). Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem, 273(7): 4282–4287

    Article  PubMed  CAS  Google Scholar 

  • Guyton K Z, Liu Y, Gorospe M, Xu Q, Holbrook N J (1996). Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem, 271(8): 4138–4142

    Article  PubMed  CAS  Google Scholar 

  • Ha H L, Yu D Y (2010). HBx-induced reactive oxygen species activates hepatocellular carcinogenesis via dysregulation of PTEN/Akt pathway. World J Gastroenterol, 16(39): 4932–4937

    Article  PubMed  CAS  Google Scholar 

  • Hambali Z, Ahmad Z, Arab S, Khazaai H (2011). Oxidative stress and its association with cardiovascular disease in chronic renal failure patients. Indian J Nephrol, 21(1): 21–25

    Article  PubMed  CAS  Google Scholar 

  • Hinton C V, Avraham S, Avraham H K (2010). Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis, 27(2): 97–105

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf D J, Zhang J, Ratajczak J, Ratajczak M Z (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol, 35(3): 233–245

    Article  PubMed  CAS  Google Scholar 

  • Kumar B, Koul S, Khandrika L, Meacham R B, Koul H K (2008). Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res, 68(6): 1777–1785

    Article  PubMed  CAS  Google Scholar 

  • Landriscina M, Maddalena F, Laudiero G, Esposito F (2009). Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal, 11(11): 2701–2716

    Article  PubMed  CAS  Google Scholar 

  • Lau E K, Allen S, Hsu A R, Handel T M (2004). Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv Protein Chem, 68: 351–391

    Article  PubMed  CAS  Google Scholar 

  • Lee R L, Westendorf J, Gold M R (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and Akt by key receptors on B-lymphocytes: CD40, the B cell antigen receptor, and CXCR4. J Cell Commun Signal, 1(1): 33–43

    Article  PubMed  Google Scholar 

  • Lee S R, Yang K S, Kwon J, Lee C, Jeong W, Rhee S G (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem, 277(23): 20336–20342

    Article  PubMed  CAS  Google Scholar 

  • Li S, Deng Y, Feng J, Ye W (2009). Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int, 33(3): 411–418

    Article  PubMed  Google Scholar 

  • Lin W, Wu G, Li S, Weinberg E M, Kumthip K, Peng L F, Méndez-Navarro J, Chen W C, Jilg N, Zhao H, Goto K, Zhang L, Brockman M A, Schuppan D, Chung R T (2011). HIV and HCV cooperatively promote hepatic fibrogenesis via induction of reactive oxygen species and NFkappaB. J Biol Chem, 286(4): 2665–2674

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422): 709–715

    Article  PubMed  CAS  Google Scholar 

  • Liou G Y, Storz P (2010). Reactive oxygen species in cancer. Free Radic Res, 44(5): 479–496

    Article  PubMed  CAS  Google Scholar 

  • Liu L Z, Hu X W, Xia C, He J, Zhou Q, Shi X, Fang J, Jiang B H (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med, 41(10): 1521–1533

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhang Y, Zhao J, Yang Z, Li D, Katirai F, Huang B (2011). Mast cell: insight into remodeling a tumor microenvironment. Cancer Metastasis Rev, 30(2):177–184

    Article  PubMed  Google Scholar 

  • Loetscher P, Moser B, Baggiolini M (2000). Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol, 74: 127–180

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan M E, McClanahan T, Murphy E, Yuan W, Wagner S N, Barrera J L, Mohar A, Verástegui E, Zlotnik A (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824): 50–56

    Article  PubMed  Google Scholar 

  • Nelson WG, De Marzo AM, DeWeese T L, Isaacs WB (2004). The role of inflammation in the pathogenesis of prostate cancer. J Urol, 172(5): 6–12

    Article  Google Scholar 

  • Ozben T (2007). Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci, 96(9): 2181–2196

    Article  PubMed  CAS  Google Scholar 

  • Pan J S, Hong M Z, Ren J L (2009). Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol, 15(14): 1702–1707

    Article  PubMed  CAS  Google Scholar 

  • Pani G, Galeotti T, Chiarugi P (2010). Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev, 29(2): 351–378

    Article  PubMed  CAS  Google Scholar 

  • Rains J L, Jain S K (2011). Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med, 50(5): 567–575

    Article  PubMed  CAS  Google Scholar 

  • Saini V, Staren DM, Ziarek J J, Nashaat Z N, Campbell EM, Volkman B F, Marchese A, Majetschak M (2011). The CXC chemokine receptor 4 ligands ubiquitin and stromal-cell derived factor-1{alpha} function through distinct receptor interactions. J Biol Chem, 286(38): 33466–33477

    Article  PubMed  CAS  Google Scholar 

  • Salmeen A, Andersen J N, Myers M P, Meng T C, Hinks J A, Tonks N K, Barford D (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature, 423(6941): 769–773

    Article  PubMed  CAS  Google Scholar 

  • Simon H U, Haj-Yehia A, Levi-Schaffer F (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5): 415–418

    Article  PubMed  CAS  Google Scholar 

  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley E J, Krek W (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425(6955): 307–311

    Article  PubMed  CAS  Google Scholar 

  • Storz P (2005). Reactive oxygen species in tumor progression. Front Biosci, 10(1–3): 1881–1896

    Article  PubMed  CAS  Google Scholar 

  • Taichman R S, Cooper C, Keller E T, Pienta K J, Taichman N S, McCauley L K (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 62(6): 1832–1837

    PubMed  CAS  Google Scholar 

  • Talks K L, Turley H, Gatter K C, Maxwell P H, Pugh CW, Ratcliffe P J, Harris A L (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol, 157(2): 411–421

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Heesen M, Yoshizawa I, Berman M A, Luo Y, Bleul C C, Springer T A, Okuda K, Gerard N, Dorf M E (1997). Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J Immunol, 159(2): 905–911

    PubMed  CAS  Google Scholar 

  • Tchou J C, Lin X, Freije D, Isaacs WB, Brooks J D, Rashid A, De Marzo A M, Kanai Y, Hirohashi S, Nelson W G (2000). GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas. Int J Oncol, 16(4): 663–676

    PubMed  CAS  Google Scholar 

  • Tomic J, Lichty B, Spaner D E (2011). Aberrant interferon-signaling is associated with aggressive chronic lymphocytic leukemia. Blood, 117(9): 2668–2680

    Article  PubMed  CAS  Google Scholar 

  • Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(2): 335–344

    Article  PubMed  CAS  Google Scholar 

  • Wagner B A, Buettner G R, Burns C P (1994). Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bisallylic hydrogen content. Biochemistry, 33(15): 4449–4453

    Article  PubMed  CAS  Google Scholar 

  • Wang G L, Jiang B H, Rue E A, Semenza G L (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA, 92(12): 5510–5514

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang J, Dai J, Jung Y, Wei C L, Wang Y, Havens A M, Hogg P J, Keller E T, Pienta K J, Nor J E, Wang C Y, Taichman R S (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res, 67(1): 149–159

    Article  PubMed  CAS  Google Scholar 

  • Wu W S, Tsai R K, Chang C H, Wang S, Wu J R, Chang Y X (2006). Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res, 4(10): 747–758

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Semenza G L, Simons J W, De Marzo A M (2004). Upregulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect Prev, 28(2): 88–93

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cimona V. Hinton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetram, M.A., Hinton, C.V. ROS-mediated regulation of CXCR4 in cancer. Front. Biol. 8, 273–278 (2013). https://doi.org/10.1007/s11515-012-1204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1204-4

Keywords

Navigation