Skip to main content
Log in

Wntless in Wnt secretion: molecular, cellular and genetic aspects

  • Review
  • Published:
Frontiers in Biology

Abstract

Throughout the animal kingdom, Wnt-triggered signal transduction pathways play fundamental roles in embryonic development and tissue homeostasis. Wnt proteins are modified as glycolipoproteins and are secreted into the extracellular environment as morphogens. Recent studies on the intracellular trafficking of Wnt proteins demonstrate multiple layers of regulation along its secretory pathway. These findings have propelled a great deal of interest among researchers to further investigate the molecular mechanisms that control the release of Wnts and hence the level of Wnt signaling. This review is dedicated to Wntless, a putative G-protein coupled receptor that transports Wnts intracellularly for secretion. Here, we highlight the conclusions drawn from the most recent cellular, molecular and genetic studies that affirm the role of Wntless in the secretion of Wnt proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attar N, Cullen P J (2010). The retromer complex. Adv Enzyme Regul, 50(1): 216–236

    Article  PubMed  Google Scholar 

  • Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 125(3): 509–522

    Article  PubMed  Google Scholar 

  • Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 125(3): 523–533

    Article  PubMed  CAS  Google Scholar 

  • Belenkaya T Y, Wu Y, Tang X, Zhou B, Cheng L, Sharma Y V, Yan D, Selva E M, Lin X (2008). The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell, 14(1): 120–131

    Article  PubMed  CAS  Google Scholar 

  • Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch D H, McMahon A P, Sommer L, Boussadia O, Kemler R (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Devel-opment, 128(8): 1253–1264

    CAS  Google Scholar 

  • Carlton J, Bujny M, Peter B J, Oorschot V M, Rutherford A, Mellor H, Klumperman J, McMahon H T, Cullen P J (2004). Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol, 14(20): 1791–1800

    Article  PubMed  CAS  Google Scholar 

  • Carlton J G, Bujny M V, Peter B J, Oorschot V M, Rutherford A, Arkell R S, Klumperman J, McMahon H T, Cullen P J (2005). Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci, 118(19): 4527–4539

    Article  PubMed  CAS  Google Scholar 

  • Carpenter A C, Rao S, Wells J M, Campbell K, Lang R A (2010). Generation of mice with a conditional null allele for Wntless. Genesis, 48(9): 554–558

    Article  PubMed  CAS  Google Scholar 

  • Ching W, Hang H C, Nusse R (2008). Lipid-independent secretion of a Drosophila Wnt protein. J Biol Chem, 283(25): 17092–17098

    Article  PubMed  CAS  Google Scholar 

  • Clevers H (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3): 469–480

    Article  PubMed  CAS  Google Scholar 

  • Coombs G S, Yu J, Canning C A, Veltri C A, Covey T M, Cheong J K, Utomo V, Banerjee N, Zhang Z H, Jadulco R C, Concepcion G P, Bugni T S, Harper M K, Mihalek I, Jones C M, Ireland C M, Virshup D M (2010). WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J Cell Sci, 123(19): 3357–3367

    Article  PubMed  CAS  Google Scholar 

  • Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice M M, Vincent J P (2008). Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol, 10(2): 170–177

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Ivy Yu H M, Maruyama T, Mirando A J, Hsu W (2011). Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn, 240(2): 365–371

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Jiang M, Mirando A J, Yu H M, Hsu W (2009). Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci USA, 106(44): 18598–18603

    Article  PubMed  CAS  Google Scholar 

  • Galli L M, Barnes T L, Secrest S S, Kadowaki T, Burrus L W (2007). Porcupine-mediated lipid-modification regulates the activity and distribution of Wnt proteins in the chick neural tube. Development, 134(18): 3339–3348

    Article  PubMed  CAS  Google Scholar 

  • Gasnereau I, Herr P, Chia P Z, Basler K, Gleeson PA (2011). Identification of an endocytosis motif in an intracellular loop of Wntless, essential for its recycling and the control of Wnt signalling. J Biol Chem, 286: 43324–43333

    Article  PubMed  CAS  Google Scholar 

  • Goodman R M, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana E P, Selva E M (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development, 133(24): 4901–4911

    Article  PubMed  CAS  Google Scholar 

  • Harterink M, Port F, Lorenowicz M J, McGough I J, Silhankova M, Betist M C, van Weering J R, van Heesbeen R G, Middelkoop T C, Basler K, Cullen P J, Korswagen H C (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol, 13(8): 914–923

    Article  PubMed  CAS  Google Scholar 

  • Herr P, Basler K (2011). Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol, 361(2): 392–402

    Article  PubMed  Google Scholar 

  • Ikeya M, Lee S M, Johnson J E, McMahon A P, Takada S (1997). Wnt signalling required for expansion of neural crest and CNS progenitors. Nature, 389(6654): 966–970

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Kittanakom S, Wong V, Reyes B A, Van Bockstaele E J, Stagljar I, Berrettini W, Levenson R (2010). Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci, 11(1): 33

    Article  PubMed  Google Scholar 

  • Komekado H, Yamamoto H, Chiba T, Kikuchi A (2007). Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells, 12(4): 521–534

    Article  PubMed  CAS  Google Scholar 

  • Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V (2009). Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell, 139(2): 393–404

    Article  PubMed  CAS  Google Scholar 

  • Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A (2007). Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J, 402(3): 515–523

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Wakamiya M, Shea M J, Albrecht U, Behringer R R, Bradley A (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet, 22(4): 361–365

    Article  PubMed  CAS  Google Scholar 

  • Logan C Y, Nusse R (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20(1): 781–810

    Article  PubMed  CAS  Google Scholar 

  • MacDonald B T, Tamai K, He X (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1): 9–26

    Article  PubMed  CAS  Google Scholar 

  • McMahon A P, Bradley A (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 62(6): 1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Pan C L, Baum P D, Gu M, Jorgensen EM, Clark S G, Garriga G (2008). C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell, 14(1): 132–139

    Article  PubMed  CAS  Google Scholar 

  • Port F, Kuster M, Herr P, Furger E, Bänziger C, Hausmann G, Basler K (2008). Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol, 10(2): 178–185

    Article  PubMed  CAS  Google Scholar 

  • Rojas R, van Vlijmen T, Mardones G A, Prabhu Y, Rojas A L, Mohammed S, Heck A J, Raposo G, van der Sluijs P, Bonifacino J S (2008). Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol, 183(3): 513–526

    Article  PubMed  CAS  Google Scholar 

  • Seaman M N (2005). Recycle your receptors with retromer. Trends Cell Biol, 15(2): 68–75

    Article  PubMed  CAS  Google Scholar 

  • Silhankova M, Port F, Harterink M, Basler K, Korswagen H C (2010). Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J, 29(24): 4094–4105

    Article  PubMed  CAS  Google Scholar 

  • Stefater J A 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter A C, Burr A R, Fan J, Ajima R, Molkentin J D, Williams B O, Wills-Karp M, Pollard J W, Yamaguchi T, Ferrara N, Gerhardt H, Lang R A (2011). Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature, 474(7352): 511–515

    Article  PubMed  CAS  Google Scholar 

  • Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006). Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell, 11(6): 791–801

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Kitagawa Y, Kadowaki T (2002). Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J Biol Chem, 277(15): 12816–12823

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T (2000). The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem, 267(13): 4300–4311

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Fan X, Lin X (2011). Regulation of Wnt Secretion and Distribution. Springer Science + Business Media, LLC 2011, 19–33

    Google Scholar 

  • Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan N J, von Zastrow M (2011). SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol, 13(6): 717–721

    Article  CAS  Google Scholar 

  • Thomas K R, Capecchi M R (1990). Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature, 346(6287): 847–850

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R (1993). Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J, 12(13): 5293–5302

    PubMed  Google Scholar 

  • Wassmer T, Attar N, Bujny M V, Oakley J, Traer C J, Cullen P J (2007). A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci, 120(1): 45–54

    Article  PubMed  CAS  Google Scholar 

  • Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938): 448–452

    Article  PubMed  CAS  Google Scholar 

  • Yang P T, Lorenowicz M J, Silhankova M, Coudreuse D Y, Betist M C, Korswagen H C (2008). Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell, 14(1): 140–147

    Article  PubMed  CAS  Google Scholar 

  • Zhai L, Chaturvedi D, Cumberledge S (2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem, 279(32): 33220–33227

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Wu Y, Belenkaya T Y, and Lin X (2011). SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res, 21(12):1677–1690

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Yu, S., Sakamori, R. et al. Wntless in Wnt secretion: molecular, cellular and genetic aspects. Front. Biol. 7, 587–593 (2012). https://doi.org/10.1007/s11515-012-1200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1200-8

Keywords

Navigation