Skip to main content
Log in

Mitochondrial transcription factor A (TFAM): one actor for different roles

  • Review
  • Published:
Frontiers in Biology

Abstract

Mitochondrial Transcription Factor A (TFAM) is a nuclear-encoded factor present in mitochondria from all kinds of animals, even with a homologous form in yeast, which has strongly and progressively gained an eminent relevance in the regulation of mitochondrial DNA (mtDNA) functions. This is due to the various functions performed by the protein, which cover a very wide scenario including: replication, transcription, maintenance and eventually repair of mtDNA molecules. In consideration of so many different roles it plays, it can be understood there is a deep interest in its regulation of expression and activity as well as its eventual involvement in pathologies related to a decreased functionality/presence of the mitochondrial genome and the consequences of TFAM induced overexpression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adair J E, Kwon Y, Dement G A, Smerdon M J, Reeves R (2005). Inhibition of nucleotide excision repair by high mobility group protein HMGA1. J Biol Chem, 280(37): 32184–32192

    Article  PubMed  CAS  Google Scholar 

  • Alam T I, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, Takio K, Hamasaki N, Kang D (2003). Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res, 31(6): 1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Antoshechkin I, Bogenhagen D F (1995). Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA. Mol Cell Biol, 15(12): 7032–7042

    PubMed  CAS  Google Scholar 

  • Bogenhagen D, Clayton D A (1977). Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell, 11(4): 719–727

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen D F, Rousseau D, Burke S (2007). The layered structure of human mitochondrial DNA nucleoids. J Biol Chem, 283(6): 3665–3675

    Article  PubMed  Google Scholar 

  • Bonawitz N D, Clayton D A, Shadel G S (2006). Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell, 24(6): 813–825

    Article  PubMed  CAS  Google Scholar 

  • Canugovi C, Maynard S, Bayne A C, Sykora P, Tian J, de Souza-Pinto N C, Croteau D L, Bohr V A (2010). The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair (Amst), 9(10): 1080–1089

    Article  CAS  Google Scholar 

  • Chen X J, Wang X, Kaufman B A, Butow R A (2005). Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science, 307(5710): 714–717

    Article  PubMed  CAS  Google Scholar 

  • Cotney J, Shadel G S (2006). Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. J Mol Evol, 63(5): 707–717

    Article  PubMed  CAS  Google Scholar 

  • Cotney J, Wang Z, Shadel G S (2007). Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFB1 and h-mtTFB2 in mitochondrial biogenesis and gene expression. Nucleic Acids Res, 35(12): 4042–4054

    Article  PubMed  CAS  Google Scholar 

  • Cotney J, McKay S E, Shadel G S (2009). Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet, 18(14): 2670–2682

    Article  PubMed  CAS  Google Scholar 

  • Dairaghi D J, Shadel G S, Clayton D A (1995). Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J Mol Biol, 249(1): 11–28

    Article  PubMed  CAS  Google Scholar 

  • de Souza-Pinto N C, Bohr V A (2002). The mitochondrial theory of aging: involvement of mitochondrial DNA damage and repair. Int Rev Neurobiol, 53: 519–534

    Article  PubMed  Google Scholar 

  • Diffley J F, Stillman B (1991). A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci USA, 88(17): 7864–7868

    Article  PubMed  CAS  Google Scholar 

  • Ekstrand M I, Falkenberg M, Rantanen A, Park C B, Gaspari M, Hultenby K, Rustin P, Gustafsson C M, Larsson N G (2004). Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet, 13(9): 935–944

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson N G, Gustafsson C M (2002). Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet, 31(3): 289–294

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg M, Larsson N G, Gustafsson C M (2007). DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem, 76(1): 679–699

    Article  PubMed  CAS  Google Scholar 

  • Fisher R P, Clayton D A (1985). A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro. J Biol Chem, 260(20): 11330–11338

    PubMed  CAS  Google Scholar 

  • Fisher R P, Clayton D A (1988). Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol, 8(8): 3496–3509

    PubMed  CAS  Google Scholar 

  • Fisher R P, Parisi M A, Clayton D A (1989). Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev, 3(12b 12B): 2202–2217

    Article  PubMed  CAS  Google Scholar 

  • Fisher R P, Lisowsky T, Parisi M A, Clayton D A (1992). DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem, 267(5): 3358–3367

    PubMed  CAS  Google Scholar 

  • Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek A M, Spelbrink J N (2003). Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell, 14(4): 1583–1596

    Article  PubMed  CAS  Google Scholar 

  • Gaspari M, Falkenberg M, Larsson N G, Gustafsson C M (2004). The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J, 23(23): 4606–4614

    Article  PubMed  CAS  Google Scholar 

  • Ghivizzani S C, Madsen C S, Nelen M R, Ammini C V, Hauswirth W W (1994). In organello footprint analysis of human mitochondrial DNA: human mitochondrial transcription factor A interactions at the origin of replication. Mol Cell Biol, 14(12): 7717–7730

    PubMed  CAS  Google Scholar 

  • He J, Mao C C, Reyes A, Sembongi H, Di Re M, Granycome C, Clippingdale A B, Fearnley I M, Harbour M, Robinson A J, Reichelt S, Spelbrink J N, Walker J E, Holt I J (2007). The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol, 176(2): 141–146

    Article  PubMed  CAS  Google Scholar 

  • Hokari M, Kuroda S, Kinugawa S, Ide T, Tsutsui H, Iwasaki Y (2010). Overexpression of mitochondrial transcription factor A (TFAM) ameliorates delayed neuronal death due to transient forebrain ischemia in mice. Neuropathology, 30(4): 401–407

    Article  PubMed  Google Scholar 

  • Huang J C, Zamble D B, Reardon J T, Lippard S J, Sancar A (1994). HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA, 91(22): 10394–10398

    Article  PubMed  CAS  Google Scholar 

  • Iborra FJ, Kimura H, Cook PR. (2004). The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9

    Article  PubMed  Google Scholar 

  • Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T, Kubota T, Fujiwara T, Hamasaki N, Takeshita A, Sunagawa K, Tsutsui H (2005). Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation, 112(5): 683–690

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Hamasaki N (2005). Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: overview of its multiple roles. Ann N Y Acad Sci, 1042(1): 101–108

    Article  PubMed  CAS  Google Scholar 

  • Kanki T, Ohgaki K, Gaspari M, Gustafsson C M, Fukuoh A, Sasaki N, Hamasaki N, Kang D (2004). Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol, 24(22): 9823–9834

    Article  PubMed  CAS  Google Scholar 

  • Kaufman B A, Durisic N, Mativetsky J M, Costantino S, Hancock M A, Grutter P, Shoubridge E A (2007). The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell, 18(9): 3225–3236

    Article  PubMed  CAS  Google Scholar 

  • King M P, Attardi G (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science, 246(4929): 500–503

    Article  PubMed  CAS  Google Scholar 

  • Kujoth G C, Hiona A, Pugh T D, Someya S, Panzer K, Wohlgemuth S E, Hofer T, Seo A Y, Sullivan R, Jobling W A, Morrow J D, Van Remmen H, Sedivy J M, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla T A (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309(5733): 481–484

    Article  PubMed  CAS  Google Scholar 

  • Kujoth G C, Leeuwenburgh C, Prolla T A (2006). Mitochondrial DNA mutations and apoptosis in mammalian aging. Cancer Res, 66(15): 7386–7389

    Article  PubMed  CAS  Google Scholar 

  • Larsson N G, Garman J D, Oldfors A, Barsh G S, Clayton D A (1996). A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nat Genet, 13(3): 296–302

    Article  PubMed  CAS  Google Scholar 

  • Larsson N G, Barsh G S, Clayton D A (1997a). Structure and chromosomal localization of the mouse mitochondrial transcription factor A gene (Tfam). Mamm Genome, 8(2): 139–140

    Article  PubMed  CAS  Google Scholar 

  • Larsson N G, Oldfors A, Garman J D, Barsh G S, Clayton D A (1997b). Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum Mol Genet, 6(2): 185–191

    Article  PubMed  CAS  Google Scholar 

  • Larsson N G, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh G S, Clayton D A (1998). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet, 18(3): 231–236

    Article  PubMed  CAS  Google Scholar 

  • Lee D Y, Clayton D A (1998). Initiation of mitochondrial DNA replication by transcription and R-loop processing. J Biol Chem, 273 (46): 30614-30621

    Google Scholar 

  • Legros F, Malka F, Frachon P, Lombès A, Rojo M (2004). Organization and dynamics of human mitochondrial DNA. J Cell Sci, 117(13): 2653–2662

    Article  PubMed  CAS  Google Scholar 

  • Lezza A M, Mecocci P, Cormio A, Beal M F, Cherubini A, Cantatore P, Senin U, Gadaleta MN (1999). Mitochondrial DNA 4977 bp deletion and OH8dG levels correlate in the brain of aged subjects but not Alzheimer’s disease patients. FASEB J, 13(9): 1083–1088

    PubMed  CAS  Google Scholar 

  • Liu T, Lu B, Lee I, Ondrovicová G, Kutejová E, Suzuki C K (2004). DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem, 279(14): 13902–13910

    Article  PubMed  CAS  Google Scholar 

  • Litonin D, Sologub M, Shi Y, Savkina M, Anikin M, Falkenberg M, Gustafsson C M, Temiakov D (2010). Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem, 285(24): 18129–18133

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Liu T, Crosby J A, Thomas-Wohlever J, Lee I, Suzuki C K (2003). The ATP-dependent Lon protease of Mus musculus is a DNAbinding protein that is functionally conserved between yeast and mammals. Gene, 306: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Yadav S, Shah P G, Liu T, Tian B, Pukszta S, Villaluna N, Kutejová E, Newlon C S, Santos J H, Suzuki C K (2007). Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem, 282(24): 17363–17374

    Article  PubMed  CAS  Google Scholar 

  • Maniura-Weber K, Goffart S, Garstka H L, Montoya J, Wiesner R J (2004). Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res, 32(20): 6015–6027

    Article  PubMed  CAS  Google Scholar 

  • Maniura-Weber K, Helm M, Engemann K, Eckertz S, Möllers M, Schauen M, Hayrapetyan A, von Kleist-Retzow J C, Lightowlers R N, Bindoff L A, Wiesner R J (2006). Molecular dysfunction associated with the human mitochondrial 3302A>G mutation in the MTTL1 (mt-tRNALeu(UUR)) gene. Nucleic Acids Res, 34(22): 6404–6415

    Article  PubMed  CAS  Google Scholar 

  • Mao C C, Holt I J (2009). Clinical and molecular aspects of diseases of mitochondrial DNA instability. Chang Gung Med J, 32(4): 354–369

    PubMed  Google Scholar 

  • Martin M, Cho J, Cesare A J, Griffith J D, Attardi G (2005). Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell, 123(7): 1227–1240

    Article  PubMed  CAS  Google Scholar 

  • Matsushima Y, Garesse R, Kaguni L S (2004). Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in schneider cells. J Biol Chem, 279(26): 26900–26905

    Article  PubMed  CAS  Google Scholar 

  • Matsushima Y, Adán C, Garesse R, Kaguni L S (2005). Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells. J Biol Chem, 280(17): 16815–16820

    Article  PubMed  CAS  Google Scholar 

  • Matsushima Y, Goto Y, Kaguni L S (2010). Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci USA, 107(43): 18410–18415

    Article  PubMed  CAS  Google Scholar 

  • Megraw T L, Chae C B (1993). Functional complementarity between the HMG1-like yeast mitochondrial histone HM and the bacterial histone-like protein HU. J Biol Chem, 268(17): 12758–12763

    PubMed  CAS  Google Scholar 

  • Metodiev M D, Lesko N, Park C B, Cámara Y, Shi Y, Wibom R, Hultenby K, Gustafsson C M, Larsson N G (2009). Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab, 9(4): 386–397

    Article  PubMed  CAS  Google Scholar 

  • Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G (1982). Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA, 79(23): 7195–7199

    Article  PubMed  CAS  Google Scholar 

  • Moraes C T (2001). What regulates mitochondrial DNA copy number in animal cells? Trends Genet, 17(4): 199–205

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama S, Shitara H, Nakada K, Ono T, Sato A, Suzuki H, Ogawa T, Masaki H, Hayashi J, Yonekawa H (2010). Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system. Biochem Biophys Res Commun, 401(1): 26–31

    Article  PubMed  CAS  Google Scholar 

  • Ohgaki K, Kanki T, Fukuoh A, Kurisaki H, Aoki Y, Ikeuchi M, Kim S H, Hamasaki N, Kang D (2006). The C-terminal tail of mitochondrial transcription factor a markedly strengthens its general binding to DNA. J Biochem, 141(2): 201–211

    Article  PubMed  Google Scholar 

  • Parisi M A, Clayton D A (1991). Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science, 252(5008): 965–969

    Article  PubMed  CAS  Google Scholar 

  • Parisi M A, Xu B, Clayton D A (1993). A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol Cell Biol, 13(3): 1951–1961

    PubMed  CAS  Google Scholar 

  • Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza A M, Cantatore P, Gadaleta M N (2001). Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med, 30(11): 1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Pierro P, Capaccio L, Gadaleta G (1999). The 25 kDa protein recognizing the rat curved region upstream of the origin of the Lstrand replication is the rat homologue of the human mitochondrial transcription factor A. FEBS Lett, 457(3): 307–310

    Article  PubMed  CAS  Google Scholar 

  • Pohjoismäki J L, Wanrooij S, Hyvärinen A K, Goffart S, Holt I J, Spelbrink J N, Jacobs H T (2006). Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res, 34(20): 5815–5828

    Article  PubMed  Google Scholar 

  • Reyes A, Mezzina M, Gadaleta G (2002). Human mitochondrial transcription factor A (mtTFA): gene structure and characterization of related pseudogenes. Gene, 291(1–2): 223–232

    Article  PubMed  CAS  Google Scholar 

  • Scarpulla R C (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev, 88(2): 611–638

    Article  PubMed  CAS  Google Scholar 

  • Seidel-Rogol B L, McCulloch V, Shadel G S (2003). Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet, 33(1): 23–24

    Article  PubMed  CAS  Google Scholar 

  • Shadel G S, Clayton D A (1997). Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem, 66(1): 409–435

    Article  PubMed  CAS  Google Scholar 

  • Shen E L, Bogenhagen D F (2001). Developmentally-regulated packaging of mitochondrial DNA by the HMG-box protein mtTFA during Xenopus oogenesis. Nucleic Acids Res, 29(13): 2822–2828

    Article  PubMed  CAS  Google Scholar 

  • Shutt T E, Lodeiro M F, Cotney J, Cameron C E, Shadel G S (2010). Core human mitochondrial transcription apparatus is a regulated twocomponent system in vitro. Proc Natl Acad Sci USA, 107(27): 12133–12138

    Article  PubMed  CAS  Google Scholar 

  • Shutt T E, Bestwick M, Shadel G S (2011). The core human mitochondrial transcription initiation complex: It only takes two to tango. Transcription, 2(2): 55–59

    Article  PubMed  Google Scholar 

  • Silva J P, Köhler M, Graff C, Oldfors A, Magnuson M A, Berggren P O, Larsson N G (2000). Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet, 26(3): 336–340

    Article  PubMed  CAS  Google Scholar 

  • Silva J P, Larsson N G (2002). Manipulation of mitochondrial DNA gene expression in the mouse. Biochim Biophys Acta, 1555(1–3): 106–110

    PubMed  CAS  Google Scholar 

  • Sologub M, Litonin D, Anikin M, Mustaev A, Temiakov D (2009). TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell, 139(5): 934–944

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu C, Umeda S, Ohsato T, Ohno T, Abe Y, Fukuoh A, Shinagawa H, Hamasaki N, Kang D (2002). Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep, 3(5): 451–456

    Article  PubMed  CAS  Google Scholar 

  • Taylor R W, Turnbull D M (2005). Mitochondrial DNA mutations in human disease. Nat Rev Genet, 6(5): 389–402

    Article  PubMed  CAS  Google Scholar 

  • Tiranti V, Barat-Gueride B, Bijl J, DiDonato S, Zeviani M (1991). A full-length cDNA encoding a mitochondrial DNA-specific singlestranded DNA binding protein from Xenopus laevis. Nucleic Acids Res, 19(15): 4291

    Article  PubMed  CAS  Google Scholar 

  • Tominaga K, Hayashi J, Kagawa Y, Ohta S (1993). Smaller isoform of human mitochondrial transcription factor 1: its wide distribution and production by alternative splicing. Biochem Biophys Res Commun, 194(1): 544–551

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui H (2006). Mitochondrial oxidative stress and heart failure. Intern Med, 45(13): 809–813

    Article  PubMed  Google Scholar 

  • Tsutsui M, Nakata S, Shimokawa H, Otsuji Y, Yanagihara N (2008). Spontaneous myocardial infarction and nitric oxide synthase. Trends Cardiovasc Med, 18(8): 275–279

    Article  PubMed  CAS  Google Scholar 

  • van Dyck E, Foury F, Stillman B, Brill S J (1992). A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J, 11(9): 3421–3430

    PubMed  Google Scholar 

  • Van Tuyle G C, Pavco P A (1985). The rat liver mitochondrial DNAprotein complex: displaced single strands of replicative intermediates are protein coated. J Cell Biol, 100(1): 251–257

    Article  PubMed  Google Scholar 

  • Wai T, Teoli D, Shoubridge E A (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet, 40(12): 1484–1488

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A, Rustin P, Brüning J C, Kahn C R, Clayton D A, Barsh G S, Thorén P, Larsson N G (1999). Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet, 21(1): 133–137

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Bogenhagen D F (2006). Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem, 281(35): 25791–25802

    Article  PubMed  CAS  Google Scholar 

  • Wanrooij S, Fusté J M, Farge G, Shi Y, Gustafsson C M, Falkenberg M (2008). Human mitochondrial RNA polymerase primes laggingstrand DNA synthesis in vitro. Proc Natl Acad Sci USA, 105(32): 11122–11127

    Article  PubMed  CAS  Google Scholar 

  • Wiesner R J, Zsurka G, Kunz W S, Wiesner R J, Zsurka G, Kunz W S (2006). Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res, 40(12): 1284–1294

    Article  PubMed  CAS  Google Scholar 

  • Wong T S, Rajagopalan S, Freund S M, Rutherford T J, Andreeva A, Townsley F M, Petrovich M, Fersht A R (2009). Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res, 37(20): 6765–6783

    Article  PubMed  CAS  Google Scholar 

  • Yeo G W, Van Nostrand E, Holste D, Poggio T, Burge C B (2005). Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci USA, 102(8): 2850–2855

    Article  PubMed  CAS  Google Scholar 

  • Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A (2010). High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet, 19(13): 2695–2705

    Article  PubMed  CAS  Google Scholar 

  • Yoon Y G, Koob M D, Yoo Y H (2011). Mitochondrial genomemaintaining activity of mouse mitochondrial transcription factor A and its transcript isoform in Saccharomyces cerevisiae. Gene, 484(1–2): 52–60

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Izumi H, Ise T, Uramoto H, Torigoe T, Ishiguchi H, Murakami T, Tanabe M, Nakayama Y, Itoh H, Kasai H, Kohno K (2002). Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA. Biochem Biophys Res Commun, 295(4): 945–951

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K (2003). P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA Cancer Res, 63(13): 3729–3734

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. S. Lezza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezza, A.M.S. Mitochondrial transcription factor A (TFAM): one actor for different roles. Front. Biol. 7, 30–39 (2012). https://doi.org/10.1007/s11515-011-1175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1175-x

Keywords

Navigation