Skip to main content
Log in

Heat shock proteins: Molecules with assorted functions

  • Review
  • Published:
Frontiers in Biology

Abstract

Heat shock proteins (Hsps) or molecular chaperones, are highly conserved protein families present in all studied organisms. Following cellular stress, the intracellular concentration of Hsps generally increases several folds. Hsps undergo ATP-driven conformational changes to stabilize unfolded proteins or unfold them for translocation across membranes or mark them for degradation. They are broadly classified in several families according to their molecular weights and functional properties. Extensive studies during the past few decades suggest that Hsps play a vital role in both normal cellular homeostasis and stress response. Hsps have been reported to interact with numerous substrates and are involved in many biological functions such as cellular communication, immune response, protein transport, apoptosis, cell cycle regulation, gametogenesis and aging. The present review attempts to provide a brief overview of various Hsps and summarizes their involvement in diverse biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, Brandon R C, Rogers Y H, Blazej R G, Champe M, Pfeiffer B D, Wan K H, Doyle C, Baxter E G, Helt G, Nelson C R, Gabor G L, Abril J F, Agbayani A, An H J, Andrews-Pfannkoch C, Baldwin D, Ballew R M, Basu A, Baxendale J, Bayraktaroglu L, Beasley E M, Beeson K Y, Benos P V, Berman B P, Bhandari D, Bolshakov S, Borkova D, Botchan M R, Bouck J, Brokstein P, Brottier P, Burtis K C, Busam D A, Butler H, Cadieu E, Center A, Chandra I, Cherry J M, Cawley S, Dahlke C, Davenport L B, Davies P, de Pablos B, Delcher A, Deng Z, Mays A D, Dew I, Dietz S M, Dodson K, Doup L E, Downes M, Dugan-Rocha S, Dunkov B C, Dunn P, Durbin K J, Evangelista C C, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian A E, Garg N S, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell J H, Gu Z, Guan P, Harris M, Harris N L, Harvey D, Heiman T J, Hernandez J R, Houck J, Hostin D, Houston K A, Howland T J, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen G H, Ke Z, Kennison J A, Ketchum K A, Kimmel B E, Kodira C D, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky A A, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh T C, McLeod M P, McPherson D, Merkulov G, Milshina N V, Mobarry C, Morris J, Moshrefi A, Mount S M, Moy M, Murphy B, Murphy L, Muzny D M, Nelson D L, Nelson D R, Nelson K A, Nixon K, Nusskern D R, Pacleb J M, Palazzolo M, Pittman G S, Pan S, Pollard J, Puri V, Reese M G, Reinert K, Remington K, Saunders R D, Scheeler F, Shen H, Shue B C, Sidén-Kiamos I, Simpson M, Skupski M P, Smith T, Spier E, Spradling A C, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang A H, Wang X, Wang Z Y, Wassarman D A, Weinstock G M, Weissenbach J, Williams S M, WoodageT K C, Worley D, Wu S, Yang Q A, Yao J, Ye R F, Yeh J S, Zaveri M, Zhan G, Zhang Q, Zhao L, Zheng X H, Zheng F N, Zhong W, Zhong X, Zhou S, Zhu X, Smith H O, Gibbs R A, Myers E W, Rubin G M, Venter J C, (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461): 2185–2195

    PubMed  Google Scholar 

  • Ambrosio L, Schedl P (1984). Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol, 105(1): 80–92

    PubMed  CAS  Google Scholar 

  • Arrigo A P, Tanguay R M (1991). Expression of heat shock proteins during development in Drosophila. Results Probl Cell Differ, 17: 106–119

    PubMed  CAS  Google Scholar 

  • Arya R, Lakhotia S C (2008). Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones, 13(4): 509–526

    PubMed  CAS  Google Scholar 

  • Arya R, Mallik M, Lakhotia S C (2007). Heat shock genes-integrating cell survival and death. J Biosci, 32(3): 595–610

    PubMed  CAS  Google Scholar 

  • Asquith K L, Baleato R M, McLaughlin E A, Nixon B, Aitken R J (2004). Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci, 117(Pt 16): 3645–3657

    PubMed  CAS  Google Scholar 

  • Baena-López L A, Alonso J, Rodriguez J, Santarén J F (2008). The expression of heat shock protein HSP60A reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J Proteome Res, 7(7): 2780–2788

    PubMed  Google Scholar 

  • Betrán E, Thornton K, Long M (2002). Retroposed new genes out of the X in Drosophila. Genome Res, 12(12): 1854–1859

    PubMed  Google Scholar 

  • Boilard M, Reyes-Moreno C, Lachance C, Massicotte L, Bailey J L, Sirard M A, Leclerc P (2004). Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol Reprod, 71(6): 1879–1889

    PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger M J (1985). Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol, 5(5): 949–956

    PubMed  CAS  Google Scholar 

  • Bösl B, Grimminger V, Walter S (2005). Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J Biol Chem, 280(46): 38170–38176

    PubMed  Google Scholar 

  • Bukau B, Horwich A L (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92(3): 351–366

    PubMed  CAS  Google Scholar 

  • Burmester T, Mink M, Pál M, Lászlóffy Z, Lepesant J, Maróy P (2000). Genetic and molecular analysis in the 70CD region of the third chromosome of Drosophila melanogaster. Gene, 246(1–2): 157–167

    PubMed  CAS  Google Scholar 

  • Burns R G, Surridge C D (1994). Functional role of a consensus peptide which is common to alpha-, beta-, and gamma-tubulin, to actin and centractin, to phytochrome A, and to the TCP1 alpha chaperonin protein. FEBS Lett, 347(2–3): 105–111

    PubMed  CAS  Google Scholar 

  • Candido E P (2002). The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog Mol Subcell Biol, 28: 61–78

    PubMed  CAS  Google Scholar 

  • Caplan A J (2003). What is a co-chaperone? Cell Stress Chaperones, 8(2): 105–107

    PubMed  Google Scholar 

  • Carbajal M E, Valet J P, Charest P M, Tanguay R M (1990). Purification of Drosophila hsp 83 and immunoelectron microscopic localization. Eur J Cell Biol, 52(1): 147–156

    PubMed  CAS  Google Scholar 

  • Cavanagh A C (1996). Identification of early pregnancy factor as chaperonin 10: implications for understanding its role. Rev Reprod, 1(1): 28–32

    PubMed  CAS  Google Scholar 

  • Chan H Y, Warrick J M, Andriola I, Merry D, Bonini N M (2002). Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet, 11(23): 2895–2904

    PubMed  CAS  Google Scholar 

  • Chandrasekhar G N, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986). Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem, 261(26): 12414–12419

    PubMed  CAS  Google Scholar 

  • Chen X, Sullivan D S, Huffaker T C (1994). Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA, 91(19): 9111–9115

    PubMed  CAS  Google Scholar 

  • Chun J N, Choi B, Lee K W, Lee D J, Kang D H, Lee J Y, Song I S, Kim H I, Lee S H, Kim H S, Lee N K, Lee S Y, Lee K J, Kim J, Kang SW, Linden R (2010). Cytosolic Hsp60 is involved in the NF-kappaBdependent survival of cancer cells via IKK regulation. PLoS ONE, 5(3): e9422

    PubMed  Google Scholar 

  • Clarke A K (1996). Variation on a theme: Combined molecular chaperone and proteolysis functions in Clp/Hsp100 proteins. J Biosci, 21(2): 161–177

    CAS  Google Scholar 

  • Creutz C E, Liou A, Snyder S L, Brownawell A, Willison K (1994). Identification of the major chromaffin granule-binding protein, chromobindin A, as the cytosolic chaperonin CCT (chaperonin containing TCP-1). J Biol Chem, 269(51): 32035–32038

    PubMed  CAS  Google Scholar 

  • Csermely P (1997). Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Trends Biochem Sci, 22(5): 147–149

    PubMed  CAS  Google Scholar 

  • Csermely P, Kahn C R (1991). The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem, 266(8): 4943–4950

    PubMed  CAS  Google Scholar 

  • Csermely P, Kajtár J, Hollósi M, Oikarinen J, Somogyi J (1994). The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure. Biochem Biophys Res Commun, 202(3): 1657–1663

    PubMed  CAS  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nadai G (1998). The 90 kDa molecular chaperone family: Structure, function and clinical applications. A comprehensive review. J Phar Ther, 79(2): 129–168

    CAS  Google Scholar 

  • Cutforth T, Rubin G M (1994). Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell, 77(7): 1027–1036

    PubMed  CAS  Google Scholar 

  • Czar M J, Owens-Grillo J K, Dittmar K D, Hutchison K A, Zacharek A M, Leach K L, Deibel M R Jr, Pratt W B (1994). Characterization of the protein-protein interactions determining the heat shock protein (hsp90.hsp70.hsp56) heterocomplex. J Biol Chem, 269(15): 11155–11161

    CAS  Google Scholar 

  • de Graeff-Meeder E R, Voorhorst M, van Eden W, Schuurman H J, Huber J, Barkley D, Maini R N, Kuis W, Rijkers G T, Zegers B J (1990). Antibodies to the mycobacterial 65-kD heat-shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am J Pathol, 137(5): 1013–1017

    PubMed  Google Scholar 

  • Dix D J (1997). Hsp70 expression and function during gametogenesis. Cell Stress Chaperones, 2(2): 73–77

    PubMed  CAS  Google Scholar 

  • Eddy E M (1998). HSP70-2 heat-shock protein of mouse spermatogenic cells. J Exp Zool, 282(1–2): 261–271

    PubMed  CAS  Google Scholar 

  • Ellis J (1987). Proteins as molecular chaperones. Nature, 328(6129): 378–379

    PubMed  CAS  Google Scholar 

  • Ellis R J (2005). Chaperomics: in vivo GroEL function defined. Curr Biol, 15(17): 661–663

    Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou J C (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol, 20(3): 929–935

    PubMed  CAS  Google Scholar 

  • Feder M E, Hofmann G E (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol, 61(1): 243–282

    PubMed  CAS  Google Scholar 

  • Feldman D E, Frydman J (2000). Protein folding in vivo: the importance of molecular chaperones. Curr Opin Struct Biol, 10(1): 26–33

    PubMed  CAS  Google Scholar 

  • Feltham J L, Gierasch L M (2000). GroEL-substrate interactions: molding the fold, or folding the mold? Cell, 100(2): 193–196

    PubMed  CAS  Google Scholar 

  • Frees D, Chastanet A, Qazi S, Sørensen K, Hill P, Msadek T, Ingmer H (2004). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol, 54(5): 1445–1462

    PubMed  CAS  Google Scholar 

  • Galdiero M, de l’Ero G C, Marcatili A (1997). Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun, 65(2): 699–707

    PubMed  CAS  Google Scholar 

  • Gao Y, Thomas J O, Chow R L, Lee G H, Cowan N J (1992). A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell, 69(6): 1043–1050

    PubMed  CAS  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 286(3): 433–442

    PubMed  CAS  Google Scholar 

  • Gerthoffer W T, Gunst S J (2001). Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol, 91(2): 963–972

    PubMed  CAS  Google Scholar 

  • Gething M J, Sambrook J (1992). Protein folding in the cell. Nature, 355(6355): 33–45

    PubMed  CAS  Google Scholar 

  • Glass J I, Lefkowitz E J, Glass J S, Heiner C R, Chen E Y, Cassell G H (2000). The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature, 407(6805): 757–762

    PubMed  CAS  Google Scholar 

  • Gong W J, Golic K G (2006). Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics, 172(1): 275–286

    PubMed  CAS  Google Scholar 

  • Gozes I, Brenneman D E (1996). Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J Mol Neurosci, 7(4): 235–244

    PubMed  CAS  Google Scholar 

  • Grantham J, Ruddock L W, Roobol A, Carden M J (2002). Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones, 7(3): 235–242

    PubMed  CAS  Google Scholar 

  • Günther E, Walter L (1994). Genetic aspects of the hsp70 multigene family in vertebrates. Experientia, 50(11–12): 987–1001

    PubMed  Google Scholar 

  • Gupta R S (1995). Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol, 15(1): 1–11

    PubMed  CAS  Google Scholar 

  • Gupta R S, Ramachandra N B, Bowes T, Singh B (2008). Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp, 291: 59–68, discussion 69–73, 137–140

    PubMed  CAS  Google Scholar 

  • Gupta S, Knowlton A A (2002). Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation, 106(21): 2727–2733

    PubMed  CAS  Google Scholar 

  • Hackett R W, Lis J T (1983). Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster. Nucleic Acids Res, 11(20): 7011–7030

    CAS  Google Scholar 

  • Hartl F U, Martin J, Neupert W (1992). Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct, 21(1): 293–322

    PubMed  CAS  Google Scholar 

  • Heikkila J J (2010). Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol, 156(1): 19–33

    PubMed  Google Scholar 

  • Hemmingsen S M (1992). What is a chaperonin? Nature, 357(6380): 650–650

    PubMed  CAS  Google Scholar 

  • Heufelder A E, Wenzel B E, Bahn R S (1992). Cell surface localization of a 72 kilodalton heat shock protein in retroocular fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab, 74(4): 732–736

    PubMed  CAS  Google Scholar 

  • Hightower L E, Seth S E (1994). Interactions of vertebrate Hsc70 and HSP70 with unfolded proteins and peptides. In “The Biology of Heat Shock Proteins and Molecular Chaperones”, Morimoto RI (ed), Cold Spring Harbour Lab Press, NY, 179–207

    Google Scholar 

  • Hill J E, Penny S L, Crowell K G, Goh S H, Hemmingsen S M (2004). cpnDB: a chaperonin sequence database. Genome Res, 14(8): 1669–1675

    PubMed  CAS  Google Scholar 

  • Hixon W G, Searcy D G (1993). Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts. Biosystems, 29(2–3): 151–160

    PubMed  CAS  Google Scholar 

  • Hochstrasser M (1992). Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol, 4(6): 1024–1031

    PubMed  CAS  Google Scholar 

  • Houlihan J L, Metzler J J, Blum J S (2009). HSP90alpha and HSP90beta isoforms selectively modulate MHC class II antigen presentation in B cells. J Immunol, 182(12): 7451–7458

    PubMed  CAS  Google Scholar 

  • Houry W A, Frishman D, Eckerskorn C, Lottspeich F, Hartl F U (1999). Identification of in vivo substrates of the chaperonin GroEL. Nature, 402(6758): 147–154

    PubMed  CAS  Google Scholar 

  • Hwang M, Moretti L, Lu B (2009). HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr Med Chem, 16(24): 3081–3092

    PubMed  CAS  Google Scholar 

  • Inano K, Curtis S W, Korach K S, Omata S, Horigome T (1994). Heat shock protein 90 strongly stimulates the binding of purified estrogen receptor to its responsive element. J Biochem, 116(4): 759–766

    PubMed  CAS  Google Scholar 

  • Ireland R C, Berger E M (1982). Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc Natl Acad Sci USA, 79(3): 855–859

    PubMed  CAS  Google Scholar 

  • Ito H, Kamei K, Iwamoto I, Inaguma Y, Tsuzuki M, Kishikawa M, Shimada A, Hosokawa M, Kato K (2003). Hsp27 suppresses the formation of inclusion bodies induced by expression of R120G alpha B-crystallin, a cause of desmin-related myopathy. Cell Mol Life Sci, 60(6): 1217–1223

    PubMed  CAS  Google Scholar 

  • Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010). Hsc70/Hsp90 chaperone machinery mediates ATPdependent RISC loading of small RNA duplexes. Mol Cell, 39(2): 292–299

    PubMed  CAS  Google Scholar 

  • Jakus S, Neuer A, Dieterle S, Bongiovanni A M, Witkin S S (2008). Antibody to the Chlamydia trachomatis 60 kDa heat shock protein in follicular fluid and in vitro fertilization outcome. Am J Reprod Immunol, 59(2): 85–89

    PubMed  Google Scholar 

  • Jinn T L, Chen YM, Lin C Y (1995). Characterization and physiological function of Class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol, 108(2): 693–701

    PubMed  CAS  Google Scholar 

  • Johnston M, Geoffroy M C, Sobala A, Hay R, Hutvagner G (2010). HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell, 21(9): 1462–1469

    PubMed  CAS  Google Scholar 

  • Jost M, Kari C, Rodeck U (2000). The EGF receptor — an essential regulator of multiple epidermal functions. Eur J Dermatol, 10(7): 505–510

    PubMed  CAS  Google Scholar 

  • Kagawa H K, Osipiuk J, Maltsev N, Overbeek R, Quaite-Randall E, Joachimiak A, Trent J D (1995). The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J Mol Biol, 253(5): 712–725

    PubMed  CAS  Google Scholar 

  • Kampinga H H, Craig E A (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol, 11(8): 579–592

    PubMed  CAS  Google Scholar 

  • Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen J A, de Jong WW (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 8(1):53–61

    PubMed  Google Scholar 

  • Katinka M D, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès C P (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature, 414(6862): 450–453

    PubMed  CAS  Google Scholar 

  • Kellermayer M S, Csermely P (1995). ATP induces dissociation of the 90 kDa heat shock protein (hsp90) from F-actin: interference with the binding of heavy meromyosin. Biochem Biophys Res Commun, 211(1): 166–174

    PubMed  CAS  Google Scholar 

  • Kikis E A, Gidalevitz T, Morimoto R I (2010). Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol, 694: 138–159

    PubMed  Google Scholar 

  • Kitagawa M, Wada C, Yoshioka S, Yura T (1991). Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). J Bacteriol, 173(14): 4247–4253

    PubMed  CAS  Google Scholar 

  • Kol A, Lichtman A H, Finberg R W, Libby P, Kurt-Jones E A (2000). Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol, 164(1): 13–17

    PubMed  CAS  Google Scholar 

  • Kozlova T, Perezgasga L, Reynaud E, Zurita M (1997). The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10AC and is differentially expressed during fly development. Dev Genes Evol, 207(4): 253–263

    CAS  Google Scholar 

  • Kurtz S, Rossi J, Petko L, Lindquist S (1986). An ancient developmental induction: heat-shock proteins induced in sporulation and oogensis. Science, 231(4742): 1154–1157

    PubMed  CAS  Google Scholar 

  • Lakhotia S C (2001). Heat Shock Response-Regulation and Functions of Coding and non-coding genes in Drosophila. Proc Ind Natl Acad Sci, B 5:247–264.

    Google Scholar 

  • Lakhotia S C, Singh A K (1989). A novel heat shock polypeptide in Malpighian tubule of Drosophila melanogaster. J Genet, 68(3): 129–268

    CAS  Google Scholar 

  • Laplante A F, Moulin V, Auger F A, Landry J, Li H, Morrow G, Tanguay R M, Germain L (1998). Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem, 46(11):1291–1301

    PubMed  CAS  Google Scholar 

  • Larsen J K, Yamboliev I A, Weber L A, Gerthoffer W T (1997). Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. Am J Physiol, 273(5 Pt 1): L930–L940

    PubMed  CAS  Google Scholar 

  • Leicht B G, Biessmann H, Palter K B, Bonner J J (1986). Small heat shock proteins of Drosophila associate with the cytoskeleton. Proc Natl Acad Sci USA, 83(1): 90–94

    PubMed  CAS  Google Scholar 

  • Leonhardt S A, Fearson K, Danese P N, Mason T L (1993). HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol, 13(10): 6304–6313

    PubMed  CAS  Google Scholar 

  • Leroux M R, Candido E P M (1997). Subunit characterization of the Caenorhabditis elegans chaperonin containing TCP-1 and expression pattern of the gene encoding CCT-1. Biochem Biophys Res Commun, 241(3): 687–692

    PubMed  CAS  Google Scholar 

  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu Z G (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem, 275(14): 10519–10526

    PubMed  CAS  Google Scholar 

  • Lilie H, Lang K, Rudolph R, Buchner J (1993). Prolyl isomerases catalyze antibody folding in vitro. Protein Sci, 2(9): 1490–1496

    PubMed  CAS  Google Scholar 

  • Lindquist S (1980). Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol, 77(2): 463–479

    PubMed  CAS  Google Scholar 

  • Lindquist S (1986). The heat-shock response. Annu Rev Biochem, 55(1): 1151–1191

    PubMed  CAS  Google Scholar 

  • Lopatin D E, Combs A, Sweier D G, Fenno J C, Dhamija S (2000). Characterization of heat-inducible expression and cloning of HtpG (Hsp90 homologue) of Porphyromonas gingivalis. Infect Immun, 68(4): 1980–1987

    PubMed  CAS  Google Scholar 

  • Matzinger P (2002). The danger model: a renewed sense of self. Science, 296(5566): 301–305

    PubMed  CAS  Google Scholar 

  • Mayer M P (2010). Gymnastics of molecular chaperones. Mol Cell, 39(3): 321–331

    PubMed  CAS  Google Scholar 

  • McDonough H, Patterson C (2003). CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones, 8(4): 303–308

    PubMed  CAS  Google Scholar 

  • McKay D B (1991). Structure of the 70-kilodalton heat-shock-related proteins. Springer Semin Immunopathol, 13(1): 1–9

    PubMed  CAS  Google Scholar 

  • Meinhardt A, Parvinen M, Bacher M, Aumüller G, Hakovirta H, Yagi A, Seitz J (1995). Expression of mitochondrial heat shock protein 60 in distinct cell types and defined stages of rat seminiferous epithelium. Biol Reprod, 52(4): 798–807

    PubMed  CAS  Google Scholar 

  • Melki R, Cowan N J (1994). Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol, 14(5): 2895–2904

    PubMed  CAS  Google Scholar 

  • Michaud S, Morrow G, Marchand J, Tanguay R M (2002). Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol, 28: 79–101

    PubMed  CAS  Google Scholar 

  • Mikhaylova L M, Nguyen K, Nurminsky D I (2008). Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics, 179(1): 305–315

    PubMed  CAS  Google Scholar 

  • Miklos D, Caplan S, Mertens D, Hynes G, Pitluk Z, Kashi Y, Harrison-Lavoie K, Stevenson S, Brown C, Barrell B, et al (1994). Primary structure and function of a second essential member of the heterooligomeric TCP1 chaperonin complex of yeast, TCP1 beta. Proc Natl Acad Sci USA, 91(7): 2743–2747

    PubMed  CAS  Google Scholar 

  • Miller S G, Leclerc R F, Erdos G W (1990). Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens. J Mol Biol, 214(2): 407–422

    PubMed  CAS  Google Scholar 

  • Morange M (2006). HSFs in development. Handb Exp Pharmacol, 172(172): 153–169

    PubMed  CAS  Google Scholar 

  • Morcillo G, Diez J L, Carbajal M E, Tanguay R M (1993). HSP90 associates with specific heat shock puffs (hsr omega) in polytene chromosomes of Drosophila and Chironomus. Chromosoma, 102(9):648–659

    PubMed  CAS  Google Scholar 

  • Morrow G, Heikkila J J, Tanguay R M (2006). Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones, 11(1): 51–60

    PubMed  CAS  Google Scholar 

  • Morrow G, Tanguay R M (2003). Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol, 14(5): 291–299

    PubMed  CAS  Google Scholar 

  • Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep, 2(12): 1133–1138

    PubMed  CAS  Google Scholar 

  • Naaby-Hansen S, Herr J C (2010). Heat shock proteins on the human sperm surface. J Reprod Immunol, 84(1): 32–40

    PubMed  CAS  Google Scholar 

  • Nakahara K, Kim K, Sciulli C, Dowd S R, Minden J S, Carthew R W (2005). Targets of microRNA regulation in the Drosophila oocyte proteome. Proc Natl Acad Sci USA, 102(34): 12023–12028

    PubMed  CAS  Google Scholar 

  • Neuer A, Lam K N, Tiller F W, Kiesel L, Witkin S S (1997). Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kDa heat shock protein in follicular fluid of in-vitro fertilization patients. Hum Reprod, 12(5):925–929

    PubMed  CAS  Google Scholar 

  • Neuer A, Spandorfer S D, Giraldo P, Dieterle S, Rosenwaks Z, Witkin S (2000). The role of heat shock protein in reproduction. Hum Repro Updt, 6(2): 149–159

    CAS  Google Scholar 

  • Nollen E A, Morimoto R I (2002). Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci, 115(Pt 14): 2809–2816

    PubMed  CAS  Google Scholar 

  • Nover L, ed. (1984). Heat Shock Response in eukaryotic cells. Springer-Verlag, Berlin, pp-1–78.

    Google Scholar 

  • Novoselova T V, Margulis B A, Novoselov S S, Sapozhnikov A M, van der Spuy J, Cheetham M E, Guzhova I V (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem, 94(3): 597–606

    PubMed  CAS  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula S M, Kumar V, Weichselbaum R, Nalin C, Alnemri E S, Kufe D, Kharbanda S (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J, 19(16): 4310–4322

    PubMed  CAS  Google Scholar 

  • Paranko J, Seitz J, Meinhardt A (1996). Developmental expression of heat shock protein 60 (HSP60) in the rat testis and ovary. Differentiation, 60(3): 159–167

    PubMed  CAS  Google Scholar 

  • Parsell D A, Lindquist S (1994). Heat shock proteins and stress tolerance. In “The Biology of Heat Shock proteins and Molecular Chaperones”, Morimoto RI. (ed), Cold Spring Harbor Lab Press, NY, 457–493

    Google Scholar 

  • Parsell D A, Sanchez Y, Stitzel J D, Lindquist S (1991). Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature, 353(6341): 270–273

    PubMed  CAS  Google Scholar 

  • Pauli D, Arrigo A P, Tissières A (1992). Heat shock response in Drosophila. Experientia, 48(7): 623–629

    PubMed  CAS  Google Scholar 

  • Pelham H R (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 46(7): 959–961

    PubMed  CAS  Google Scholar 

  • Pfister G, Stroh C M, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005). Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci, 118(Pt 8): 1587–1594

    PubMed  CAS  Google Scholar 

  • Pockley A G (2002). Heat shock proteins, inflammation, and cardiovascular disease. Circulation, 105(8): 1012–1017

    PubMed  CAS  Google Scholar 

  • Pratt W B, Czar M J, Stancato L F, Owens J K (1993). The hsp56 immunophilin component of steroid receptor heterocomplexes: could this be the elusive nuclear localization signal-binding protein? J Steroid Biochem Mol Biol, 46(3): 269–279

    PubMed  CAS  Google Scholar 

  • Pratt WB, Toft D O (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood), 228(2): 111–133

    CAS  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science, 298(5593): 597–600

    PubMed  CAS  Google Scholar 

  • Ranford J C, Coates A R, Henderson B (2000). Chaperonins are cellsignalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med, 2(8): 1–17

    PubMed  CAS  Google Scholar 

  • Ranson N A, White H E, Saibil H R (1998). Chaperonins. Biochem J, 333(Pt 2): 233–242

    PubMed  CAS  Google Scholar 

  • Rassow J, Ahsen O V, Bomer U, Pfanner N (1997). Molecular chaperones: Towards a characterization of the heat-shock protein 70 family. Trends Genet, 7: 129–133

    CAS  Google Scholar 

  • Retzlaff C, Yamamoto Y, Hoffman P S, Friedman H, Klein T W (1994). Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun, 62(12): 5689–5693

    PubMed  CAS  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010). The heat shock response: life on the verge of death. Mol Cell, 40(2): 253–266

    PubMed  CAS  Google Scholar 

  • Ritossa F A (1962). A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia, 18(12): 571–573

    CAS  Google Scholar 

  • Roobol A, Carden M J (1999). Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol, 78(1): 21–32

    PubMed  CAS  Google Scholar 

  • Roobol A, Holmes F E, Hayes N V L, Baines A J, Carden M J (1995). Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci, 108(Pt 4): 1477–1488

    PubMed  CAS  Google Scholar 

  • Rubin GM, Yandell MD, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science, 287(5461): 2204–2215

    PubMed  CAS  Google Scholar 

  • Rutherford S, Knapp J R, Csermely P (2007). Hsp90 and developmental networks. Adv Exp Med Biol, 594: 190–197

    PubMed  Google Scholar 

  • Rutherford S L (2003). Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet, 4(4): 263–274

    PubMed  CAS  Google Scholar 

  • Rutherford S L, Lindquist S (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396(6709): 336–342

    PubMed  CAS  Google Scholar 

  • Saibil H (1996). The lid that shapes the pot: structure and function of the chaperonin GroES. Structure, 4(1): 1–4

    PubMed  CAS  Google Scholar 

  • Samali A, Cai J, Zhivotovsky B, Jones D P, Orrenius S (1999). Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J, 18(8): 2040–2048

    PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist S L (1990). HSP104 required for induced thermotolerance. Science, 248(4959): 1112–1115

    PubMed  CAS  Google Scholar 

  • Sarge K D, Cullen K E (1997). Regulation of hsp expression during rodent spermatogenesis. Cell Mol Life Sci, 53(2): 191–197

    PubMed  CAS  Google Scholar 

  • Sarkar S, Arya S, Lakhotia S C (2006) Chaperonins in life and death. In: Stress response: a molecular biology approach (A.S. Sreedhar ed): Signpost Publication: Trivandrum, India (p 43–60).

    Google Scholar 

  • Sarkar S, Lakhotia S C (2005). The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J Genet, 84(3): 265–281

    PubMed  CAS  Google Scholar 

  • Sarkar S, Lakhotia S C (2008). Hsp60C is required in follicle as well as germline cells during oogenesis in Drosophila melanogaster. Dev Dyn, 237(5): 1334–1347

    PubMed  Google Scholar 

  • Schirmer E C, Glover J R, Singer M A, Lindquist S (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci, 21(8): 289–296

    PubMed  CAS  Google Scholar 

  • Shinoda H, Huang C C (1996). Heat shock proteins in middle ear cholesteatoma. Otolaryngol Head Neck Surg, 114(1): 77–83

    PubMed  CAS  Google Scholar 

  • Singh B N, Lakhotia S C (1995). The non-induction of heat shocked Malpighian tubules of Drosophila larvae is not due to constitutive presence of hsp70 or hsc70. Curr Sci, 69: 178–182

    CAS  Google Scholar 

  • Sjögren L L, MacDonald T M, Sutinen S, Clarke A K (2004). Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol, 136(4): 4114–4126

    PubMed  Google Scholar 

  • Slavotinek AM, Biesecker L G (2001). Unfolding the role of chaperones and chaperonins in human disease. Trends Genet, 17(9): 528–535

    PubMed  CAS  Google Scholar 

  • Soares H, Penque D, Mouta C, Rodrigues-Pousada C (1994). A Tetrahymena orthologue of the mouse chaperonin subunit CCT gamma and its coexpression with tubulin during cilia recovery. J Biol Chem, 269(46): 29299–29307

    PubMed  CAS  Google Scholar 

  • Sollars V, Lu X, Xiao L, Wang X, Garfinkel M D, Ruden D M (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet, 33(1): 70–74

    PubMed  CAS  Google Scholar 

  • Soltys B J, Gupta R S (1996). Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res, 222(1): 16–27

    PubMed  CAS  Google Scholar 

  • Soltys B J, Gupta R S (1999). Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci, 24(5): 174–177

    PubMed  CAS  Google Scholar 

  • Song H Y, Dunbar J D, Zhang Y X, Guo D, Donner D B (1995). Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem, 270(8): 3574–3581

    PubMed  CAS  Google Scholar 

  • Soti C, Csermely P (2002). Chaperones come of age. Cell Stress Chaperones, 7(2): 186–190

    PubMed  CAS  Google Scholar 

  • Sõti C, Nagy E, Giricz Z, VÍgh L, Csermely P, Ferdinandy P (2005). Heat shock proteins as emerging therapeutic targets. Br J Pharmacol, 146(6): 769–780

    PubMed  Google Scholar 

  • Southgate R, Ayme A, Voellmy R (1983). Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J Mol Biol, 165(1): 35–57

    PubMed  CAS  Google Scholar 

  • Spiess C, Meyer A S, Reissmann S, Frydman J (2004). Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol, 14(11): 598–604

    PubMed  CAS  Google Scholar 

  • Squires C L, Pedersen S, Ross B M, Squires C (1991). ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol, 173(14): 4254–4262

    PubMed  CAS  Google Scholar 

  • Srinivas U K, Revathi C J, Das M R (1987). Heat-induced expression of albumin during early stages of rat embryo development. Mol Cell Biol, 7(12): 4599–4602

    PubMed  CAS  Google Scholar 

  • Sternlicht H, Farr GW, Sternlicht ML, Driscoll J K, Willison K, YaffeM B (1993). The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA, 90(20): 9422–9426

    PubMed  CAS  Google Scholar 

  • Sun Y, MacRae T H (2005). Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci, 62(21): 2460–2476

    PubMed  CAS  Google Scholar 

  • Tabibzadeh S, Kong Q F, Satyaswaroop P G, Babaknia A (1996). Heat shock proteins in human endometrium throughout the menstrual cycle. Hum Reprod, 11(3): 633–640

    PubMed  CAS  Google Scholar 

  • Tai P K, Albers M W, Chang H, Faber L E, Schreiber S L (1992). Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science, 256(5061): 1315–1318

    PubMed  CAS  Google Scholar 

  • Tai P K, Faber L E (1985). Isolation of dissimilar components of the 8.5S nonactivated uterine progestin receptor. Can J Biochem Cell Biol, 63(1): 41–49

    CAS  Google Scholar 

  • Taipale M, Jarosz D F, Lindquist S (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol, 11(7): 515–528

    PubMed  CAS  Google Scholar 

  • Thirumalai D, Lorimer G H (2001). Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct, 30(1): 245–269

    PubMed  CAS  Google Scholar 

  • Thornberry N A, Lazebnik Y (1998). Caspases: enemies within. Science, 281(5381): 1312–1316

    PubMed  CAS  Google Scholar 

  • Timakov B, Zhang P (2001). The hsp60B gene of Drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperones, 6(1): 71–77

    PubMed  CAS  Google Scholar 

  • Tissières A, Mitchell H K, Tracy U M (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol, 84(3): 389–398

    PubMed  Google Scholar 

  • Togo T, Dickson D W (2002). Ballooned neurons in progressive supranuclear palsy are usually due to concurrent argyrophilic grain disease. Acta Neuropathol, 104(1): 53–56

    PubMed  Google Scholar 

  • Török Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G, VÍgh L (1997). Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA, 94(6): 2192–2197

    PubMed  Google Scholar 

  • Trent J D, Kagawa H K, Yaoi T, Olle E, Zaluzec N J (1997). Chaperonin filaments: the archaeal cytoskeleton? Proc Natl Acad Sci USA, 94(10): 5383–5388

    PubMed  CAS  Google Scholar 

  • Trent J D, Nimmesgern E, Wall J S, Hartl F U, Horwich A L (1991). A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature, 354(6353): 490–493

    PubMed  CAS  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010). Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer, 10(8): 537–549

    PubMed  CAS  Google Scholar 

  • Ursic D, Culbertson M R (1991). The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol, 11(5): 2629–2640

    PubMed  CAS  Google Scholar 

  • Ursic D, Sedbrook J C, Himmel K L, Culbertson M R (1994). The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell, 5(10): 1065–1080

    PubMed  CAS  Google Scholar 

  • van der Straten A, Rommel C, Dickson B, Hafen E (1997). The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J, 16(8): 1961–1969

    PubMed  Google Scholar 

  • van Eden W (2006). Immunoregulation of autoimmune diseases. Hum Immunol, 67(6): 446–453

    PubMed  Google Scholar 

  • Verdegaal M E, Zegveld S T, van Furth R (1996). Heat shock protein 65 induces CD62e, CD106, and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. J Immunol, 157(1): 369–376

    PubMed  CAS  Google Scholar 

  • Vinh D B, Drubin D G (1994). A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci USA, 91(19): 9116–9120

    PubMed  CAS  Google Scholar 

  • Voellmy R, Bromley P, Kocher H P (1983). Structural similarities between corresponding heat-shock proteins from different eukaryotic cells. J Biol Chem, 258(6): 3516–3522

    PubMed  CAS  Google Scholar 

  • Vos M J, Zijlstra M P, Kanon B, van Waarde-Verhagen M A, Brunt E R, Oosterveld-Hut H M, Carra S, Sibon O C, Kampinga H H (2010). HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet, 19(23): 4677–4693

    PubMed  CAS  Google Scholar 

  • Werner A, Meinhardt A, Seitz J, Bergmann M (1997). Distribution of heat-shock protein 60 immunoreactivity in testes of infertile men. Cell Tissue Res, 288(3): 539–544

    PubMed  CAS  Google Scholar 

  • Werner A, Seitz J, Meinhardt A, Bergmann M (1996). Distribution pattern of HSP60 immunoreactivity in the testicular tissue of infertile men. Ann Anat, 178(1): 81–82

    PubMed  CAS  Google Scholar 

  • Whitley D, Goldberg S P, Jordan W D (1999). Heat shock proteins: a review of the molecular chaperones. J Vasc Surg, 29(4): 748–751

    PubMed  CAS  Google Scholar 

  • Wolf B B, Green D R (1999). Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem, 274(29): 20049–20052

    PubMed  CAS  Google Scholar 

  • Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW(1999). Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J, 18(8): 2049–2056

    PubMed  CAS  Google Scholar 

  • Xu Q, Wick G (1996). The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today, 2(9): 372–379

    PubMed  CAS  Google Scholar 

  • Yaffe MB, Farr GW, Miklos D, Horwich A L, Sternlicht ML, Sternlicht H (1992). TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, 358(6383): 245–248

    PubMed  CAS  Google Scholar 

  • Yahara I (1999). The role of HSP90 in evolution. Genes Cells, 4(7): 375–379

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Takahashi Y, Inano K, Horigome T, Sugano H (1991). Characterization of the hydrophobic region of heat shock protein 90. J Biochem, 110(1): 141–145

    PubMed  CAS  Google Scholar 

  • Zhang L, Koivisto L, Heino J, Uitto V J (2004). Bacterial heat shock protein 60 may increase epithelial cell migration through activation of MAP kinases and inhibition of α6β4 integrin expression. Biochem Biophys Res Commun, 319(4): 1088–1095

    PubMed  CAS  Google Scholar 

  • Zhang L, Pelech S L, Mayrand D, Grenier D, Heino J, Uitto V J (2001). Bacterial heat shock protein-60 increases epithelial cell proliferation through the ERK1/2 MAP kinases. Exp Cell Res, 266(1): 11–20

    PubMed  CAS  Google Scholar 

  • Zhao R, Davey M, Hsu Y C, Kaplanek P, Tong A, Parsons A B, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry W A (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell, 120(5): 715–727

    PubMed  CAS  Google Scholar 

  • Zimmerman J L, Petri W, Meselson M (1983). Accumulation of a specific subset of D. Melanogaster heat shock mRNAs in normal development without heat shock. Cell, 32(4): 1161–1170

    PubMed  CAS  Google Scholar 

  • Zügel U, Kaufmann S H (1999). Immune response against heat shock proteins in infectious diseases. Immunobiology, 201(1): 22–35

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S., Singh, M.D., Yadav, R. et al. Heat shock proteins: Molecules with assorted functions. Front. Biol. 6, 312–327 (2011). https://doi.org/10.1007/s11515-011-1080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1080-3

Keywords

Navigation