Skip to main content
Log in

Flavivirus RNA cap methyltransferase: structure, function, and inhibition

  • Review
  • Published:
Frontiers in Biology

Abstract

Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m7GpppA → m7GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2′-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2′-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham G, Rhodes D P, Banerjee A K (1975). The 5′ terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus. Cell, 5(1): 51–58

    Article  PubMed  CAS  Google Scholar 

  • Ackermann M, Padmanabhan R (2001). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem, 276(43): 39926–39937

    Article  PubMed  CAS  Google Scholar 

  • Ahola T, Kääriäinen L (1995). Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A, 92(2): 507–511

    Article  PubMed  CAS  Google Scholar 

  • Arias C F, Preugschat F, Strauss J H (1993). Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology, 193(2): 888–899

    Article  PubMed  CAS  Google Scholar 

  • Asnis D S, Conetta R, Teixeira A A, Waldman G, Sampson B A (2000). The West Nile Virus outbreak of 1999 in New York: the Flushing Hospital experience. Clin Infect Dis, 30(3): 413–418

    Article  PubMed  CAS  Google Scholar 

  • Asnis D S, Conetta R, Waldman G, Teixeira A A (2001). The West Nile virus encephalitis outbreak in the United States (1999–2000): from Flushing, New York, to beyond its borders. Ann N Y Acad Sci, 951: 161–171

    Article  PubMed  CAS  Google Scholar 

  • Assenberg R, Ren J, Verma A, Walter T S, Alderton D, Hurrelbrink R J, Fuller S D, Bressanelli S, Owens R J, Stuart D I, Grimes J M (2007). Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues. J Gen Virol, 88(Pt 8): 2228–2236

    Article  PubMed  CAS  Google Scholar 

  • Barbas C F 3rd, Heine A, Zhong G, Hoffmann T, Gramatikova S, Björnestedt R, List B, Anderson J, Stura E A, Wilson I A, Lerner R A (1997). Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science, 278(5346): 2085–2092

    Article  PubMed  CAS  Google Scholar 

  • Barbosa E, Moss B (1978). mRNA(nucleoside-2′-)-methyltransferase from vaccinia virus. Characteristics and substrate specificity. J Biol Chem, 253(21): 7698–7702

    PubMed  CAS  Google Scholar 

  • Benarroch D, Egloff M P, Mulard L, Guerreiro C, Romette J L, Canard B (2004). A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. J Biol Chem, 279(34): 35638–35643

    Article  PubMed  CAS  Google Scholar 

  • Bernard K A, Kramer L D (2001). West Nile virus activity in the United States, 2001. Viral Immunol, 14(4): 319–338

    Article  PubMed  CAS  Google Scholar 

  • Bernard K A, Maffei J G, Jones S A, Kauffman E B, Ebel G, Dupuis A P 2nd, Ngo K A, Nicholas D C, Young D M, Shi P Y, Kulasekera V L, Eidson M, White D J, Stone W B, Kramer L D, and the NY State West Nile Virus Surveillance Team (2001). West Nile virus infection in birds and mosquitoes, New York State, 2000. Emerg Infect Dis, 7(4): 679–685

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Hoover S, Falk S P, Weisblum B, Vestling M, Striker R (2008). Phosphorylation of yellow fever virus NS5 alters methyltransferase activity. Virology, 380(2): 276–284

    Article  PubMed  CAS  Google Scholar 

  • Bisaillon M, Lemay G (1997). Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology, 236(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  • Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould E A, Grard G, Grimes J M, Hilgenfeld R, Jansson A M, Malet H, Mancini E J, Mastrangelo E, Mattevi A, Milani M, Moureau G, Neyts J, Owens R J, Ren J, Selisko B, Speroni S, Steuber H, Stuart D I, Unge T, Bolognesi M (2009a). Structure and functionality in flavivirus NSproteins: Perspectives for drug design. Antiviral Res, 2009 Nov 27. [Epub ahead of print] doi:10.1016/j.antiviral.2009.11.009

  • Bollati M, Milani M, Mastrangelo E, de Lamballerie X, Canard B, Bolognesi M (2009b). Crystal structure of a methyltransferase from a no-known-vector Flavivirus. Biochem Biophys Res Commun, 382(1): 200–204

    Article  PubMed  CAS  Google Scholar 

  • Bollati M, Milani M, Mastrangelo E, Ricagno S, Tedeschi G, Nonnis S, Decroly E, Selisko B, de Lamballerie X, Coutard B, Canard B, Bolognesi M (2009c). Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus. J Mol Biol, 385(1): 140–152

    Article  PubMed  CAS  Google Scholar 

  • Brinton M A (1981). Isolation of a replication-efficient mutant of West Nile virus from a persistently infected genetically resistant mouse cell culture. J Virol, 39(2): 413–421

    PubMed  CAS  Google Scholar 

  • Brinton M A (2002). The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol, 56: 371–402

    Article  PubMed  CAS  Google Scholar 

  • Brinton M A, Dispoto J H (1988). Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. Virology, 162(2): 290–299

    Article  PubMed  CAS  Google Scholar 

  • Burke D S, Monath T P (2001). Flaviviruses. Philadelphia, PA: Lippincott William & Wilkins

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2000). Guidelines for surveillance, prevention, and control of West Nile virus infection—United States. MMWR Morb Mortal Wkly Rep, 49(2): 25–28

    Google Scholar 

  • Chambers T J, Hahn C S, Galler R, Rice C M (1990). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol, 44: 649–688

    Article  PubMed  CAS  Google Scholar 

  • Chambers T J, Grakoui A, Rice C M (1991). Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J Virol, 65(11): 6042–6050

    PubMed  CAS  Google Scholar 

  • Chambers T J, Nestorowicz A, Amberg S M, Rice C M (1993). Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J Virol, 67(11): 6797–6807

    PubMed  CAS  Google Scholar 

  • Chung K Y, Dong H, Chao A T, Shi P Y, Lescar J, Lim S P (2010). Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2′-O methyltransferase activity in dengue virus. Virology, 402(1): 52–60

    Article  PubMed  CAS  Google Scholar 

  • Cleaves G R, Dubin D T (1979). Methylation status of intracellular dengue type 2 40 S RNA. Virology, 96(1): 159–165

    Article  PubMed  CAS  Google Scholar 

  • Cong P, Shuman S (1992). Methyltransferase and subunit association domains of vaccinia virus mRNA capping enzyme. J Biol Chem, 267(23): 16424–16429

    PubMed  CAS  Google Scholar 

  • Davidson A D (2009). Chapter 2. New insights into flavivirus nonstructural protein 5. Adv Virus Res, 74: 41–101

    Article  PubMed  CAS  Google Scholar 

  • De la Peña M, Kyrieleis O J, Cusack S (2007). Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. EMBO J, 26(23): 4913–4925

    Article  PubMed  CAS  Google Scholar 

  • Diamond M S, Edgil D, Roberts T G, Lu B, Harris E (2000). Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol, 74(17): 7814–7823

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Ray D, Ren S, Zhang B, Puig-Basagoiti F, Takagi Y, Ho C K, Li H, Shi P Y (2007). Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol, 81(9): 4412–4421

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Ren S, Li H, Shi P Y (2008a). Separate molecules of West Nile virus methyltransferase can independently catalyze the N7 and 2′-O methylations of viral RNA cap. Virology, 377(1): 1–6

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Ren S, Zhang B, Zhou Y, Puig-Basagoiti F, Li H, Shi P Y (2008b). West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. J Virol, 82(9): 4295–4307

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Zhang B, Shi P Y (2008c). Flavivirus methyltransferase: a novel antiviral target. Antiviral Res, 80(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  • Egloff M P, Benarroch D, Selisko B, Romette J L, Canard B (2002). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J, 21(11): 2757–2768

    Article  PubMed  CAS  Google Scholar 

  • Egloff M P, Decroly E, Malet H, Selisko B, Benarroch D, Ferron F, Canard B (2007). Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol, 372(3): 723–736

    Article  PubMed  CAS  Google Scholar 

  • Fabrega C, Hausmann S, Shen V, Shuman S, Lima C D (2004). Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell, 13(1): 77–89

    Article  PubMed  CAS  Google Scholar 

  • Falgout B, Miller R H, Lai C J (1993). Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J Virol, 67(4): 2034–2042

    PubMed  CAS  Google Scholar 

  • Fauman E B, Blumenthal R M, Cheng X D (1999) Structure and evolution of AdoMet-dependent methyltransferases. World Scientific Publishing Co., Singapore.

    Google Scholar 

  • Fredericksen B L, Gale M Jr (2006). West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J Virol, 80(6): 2913–2923

    Article  PubMed  CAS  Google Scholar 

  • Frey P A, Kokesh F C, Westheimer F H (1971). A reporter group at the active site of acetoacetate decarboxylase. I. Ionization constant of the nitrophenol. J Am Chem Soc, 93(26): 7266–7269

    Article  PubMed  CAS  Google Scholar 

  • Furuichi Y, Shatkin A J (2000). Viral and cellular mRNA capping: past and prospects. Adv Virus Res, 55: 135–184

    Article  PubMed  CAS  Google Scholar 

  • Geiss B J, Thompson A A, Andrews A J, Sons R L, Gari H H, Keenan S M, Peersen O B (2009). Analysis of flavivirus NS5 methyltransferase cap binding. J Mol Biol, 385(5): 1643–1654

    Article  PubMed  CAS  Google Scholar 

  • Gong W, O’Gara M, Blumenthal RM, Cheng X (1997). Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res, 25(14): 2702–2715

    Article  PubMed  CAS  Google Scholar 

  • Gu M, Lima C D (2005). Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol, 15(1): 99–106

    Article  PubMed  CAS  Google Scholar 

  • Guyatt K J, Westaway E G, Khromykh A A (2001). Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods, 92(1): 37–44

    Article  PubMed  CAS  Google Scholar 

  • Hager J, Staker B L, Bugl H, Jakob U (2002). Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem, 277(44): 41978–41986

    Article  PubMed  CAS  Google Scholar 

  • Highbarger L A, Gerlt J A, Kenyon G L (1996). Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115. Biochemistry, 35(1): 41–46

    Article  PubMed  CAS  Google Scholar 

  • Hodel A E, Gershon P D, Shi X, Quiocho F A (1996). The 1.85 A structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell, 85(2): 247–256

    Article  PubMed  CAS  Google Scholar 

  • Hodel A E, Gershon P D, Quiocho F A (1998). Structural basis for sequence-nonspecific recognition of 5′-capped mRNA by a capmodifying enzyme. Mol Cell, 1(3): 443–447

    Article  PubMed  CAS  Google Scholar 

  • Hodel A E, Quiocho F A, Gershon P D (1999). VP39-an mRNA capspecific 2′-o-methyltransferase. In: X.D. Cheng and R.M. Blementhal, eds. S-Adenosylmethionine-dependent methyltransferase: structures and functions. 255–282

  • Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K K, Schlee M, Endres S, Hartmann G (2006). 5′-Triphosphate RNA is the ligand for RIG-I. Science, 314(5801): 994–997

    Article  PubMed  Google Scholar 

  • Horton J R, Sawada K, Nishibori M, Zhang X, Cheng X (2001). Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure, 9(9): 837–849

    Article  PubMed  CAS  Google Scholar 

  • Issur M, Geiss B J, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey S E, Bisaillon M (2009). The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA, 15(12): 2340–2350

    Article  PubMed  CAS  Google Scholar 

  • Jansson A M, Jakobsson E, Johansson P, Lantez V, Coutard B, de Lamballerie X, Unge T, Jones T A (2009). Structure of the methyltransferase domain from the Modoc virus, a flavivirus with no known vector. Acta Crystallogr D Biol Crystallogr, 65(Pt 8): 796–803

    Article  PubMed  CAS  Google Scholar 

  • Kamer G, Argos P (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res, 12(18): 7269–7282

    Article  PubMed  CAS  Google Scholar 

  • Khromykh A A, Kenney M T, Westaway E G (1998). Transcomplementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol, 72(9): 7270–7279

    PubMed  CAS  Google Scholar 

  • Kokesh F C, Westheimer F H (1971). A reporter group at the active site of acetoacetate decarboxylase. II. Ionization constant of the amino group. J Am Chem Soc, 93(26): 7270–7274

    Article  PubMed  CAS  Google Scholar 

  • Komoto J, Huang Y, Takata Y, Yamada T, Konishi K, Ogawa H, Gomi T, Fujioka M, Takusagawa F (2002). Crystal structure of guanidinoacetate methyltransferase from rat liver: a model structure of protein arginine methyltransferase. J Mol Biol, 320(2): 223–235

    Article  PubMed  CAS  Google Scholar 

  • Koonin E V (1991). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol, 72(Pt 9): 2197–2206

    Article  PubMed  Google Scholar 

  • Koonin E V (1993). Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol, 74(Pt 4): 733–740

    Article  PubMed  CAS  Google Scholar 

  • Kramer L D, Bernard K A (2001). West Nile virus infection in birds and mammals. Ann N Y Acad Sci, 951: 84–93

    Article  PubMed  CAS  Google Scholar 

  • Kramer L D, Li J, Shi P Y (2007). West Nile virus. Lancet Neurol, 6(2): 171–181

    Article  PubMed  CAS  Google Scholar 

  • Kroschewski H, Lim S P, Butcher R E, Yap T L, Lescar J, Wright P J, Vasudevan S G, Davidson A D (2008). Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem, 283(28): 19410–19421

    Article  PubMed  CAS  Google Scholar 

  • Kümmerer B M, Rice C M (2002). Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J Virol, 76(10): 4773–4784

    Article  PubMed  Google Scholar 

  • Kwon T, Chang J H, Kwak E, Lee C W, Joachimiak A, Kim Y C, Lee J, Cho Y (2003). Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J, 22(2): 292–303

    Article  PubMed  CAS  Google Scholar 

  • Li H, Clum S, You S, Ebner K E, Padmanabhan R (1999). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol, 73(4): 3108–3116

    PubMed  CAS  Google Scholar 

  • Li J, Wang J T, Whelan S P (2006). A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. Proc Natl Acad Sci U S A, 103(22): 8493–8498

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lok S M, Yu I M, Zhang Y, Kuhn R J, Chen J, Rossmann M G (2008). The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science, 319(5871): 1830–1834

    Article  PubMed  CAS  Google Scholar 

  • Lim S P, Wen D, Yap T L, Yan C K, Lescar J, Vasudevan S G (2008). A scintillation proximity assay for dengue virus NS5 2′-O-methyltransferase-kinetic and inhibition analyses. Antiviral Res, 80(3): 360–369

    Article  PubMed  CAS  Google Scholar 

  • Lindenbach B D, Rice C M (1997). trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol, 71(12): 9608–9617

    PubMed  CAS  Google Scholar 

  • Lindenbach B D, Rice C M (1999). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol, 73(6): 4611–4621

    PubMed  CAS  Google Scholar 

  • Luzhkov V B, Selisko B, Nordqvist A, Peyrane F, Decroly E, Alvarez K, Karlen A, Canard B, Qvist J (2007). Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorg Med Chem, 15(24): 7795–7802

    Article  PubMed  CAS  Google Scholar 

  • Malone T, Blumenthal R M, Cheng X (1995). Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol, 253(4): 618–632

    Article  PubMed  CAS  Google Scholar 

  • Martin J L, McMillan F M (2002). SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol, 12(6): 783–793

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo E, Bollati M, Milani M, Selisko B, Peyrane F, Canard B, Grard G, de Lamballerie X, Bolognesi M (2007). Structural bases for substrate recognition and activity in Meaban virus nucleoside-2′-Omethyltransferase. Protein Sci, 16(6): 1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Milani M, Mastrangelo E, Bollati M, Selisko B, Decroly E, Bouvet M, Canard B, Bolognesi M (2009). Flaviviral methyltransferase/RNA interaction: structural basis for enzyme inhibition. Antiviral Res, 83(1): 28–34

    Article  PubMed  CAS  Google Scholar 

  • Moure C M, Bowman B R, Gershon P D, Quiocho F A (2006). Crystal structures of the vaccinia virus polyadenylate polymerase heterodimer: insights into ATP selectivity and processivity. Mol Cell, 22(3): 339–349

    Article  PubMed  CAS  Google Scholar 

  • Muylaert I R, Chambers T J, Galler R, Rice C M (1996). Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology, 222(1): 159–168

    Article  PubMed  CAS  Google Scholar 

  • Muylaert I R, Galler R, Rice C M (1997). Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol, 71(1): 291–298

    PubMed  CAS  Google Scholar 

  • Nicholls A, Sharp K A, Honig B (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11(4): 281–296

    Article  PubMed  CAS  Google Scholar 

  • Ogino T, Banerjee A K (2007). Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell, 25(1): 85–97

    Article  PubMed  CAS  Google Scholar 

  • Perera R, Kuhn R J (2008). Structural proteomics of dengue virus. Curr Opin Microbiol, 11(4): 369–377

    Article  PubMed  CAS  Google Scholar 

  • Petersen L R, Roehrig J T (2001). West Nile virus: a reemerging global pathogen. Emerg Infect Dis, 7(4): 611–614

    Article  PubMed  CAS  Google Scholar 

  • Peyrane F, Selisko B, Decroly E, Vasseur J J, Benarroch D, Canard B, Alvarez K (2007). High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2′O positions. Nucleic Acids Res, 35(4): e26

    Article  PubMed  CAS  Google Scholar 

  • Podvinec M, Lim S P, Schmidt T, Scarsi M, Wen D, Sonntag L S, Sanschagrin P, Shenkin P S, Schwede T (2010). Novel inhibitors of dengue virus methyltransferase: discovery by in vitro-driven virtual screening on a desktop computer grid. JMed Chem, 53(4): 1483–1495

    Article  CAS  Google Scholar 

  • Puig-Basagoiti F, Qing M, Dong H, Zhang B, Zou G, Yuan Z, Shi P Y (2009). Identification and characterization of inhibitors of West Nile virus. Antiviral Res, 83(1): 71–79

    Article  PubMed  CAS  Google Scholar 

  • Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H, Deas T S, Zhou Y, Li H, Shi P Y (2006). West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol, 80(17): 8362–8370

    Article  PubMed  CAS  Google Scholar 

  • Reinisch K M, Nibert M L, Harrison S C (2000). Structure of the reovirus core at 3.6 A resolution. Nature, 404(6781): 960–967

    Article  PubMed  CAS  Google Scholar 

  • Rice C M, Lenches E M, Eddy S R, Shin S J, Sheets R L, Strauss J H (1985). Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science, 229(4715): 726–733

    Article  PubMed  CAS  Google Scholar 

  • Sampath A, Padmanabhan R (2009). Molecular targets for flavivirus drug discovery. Antiviral Res, 81(1): 6–15

    Article  PubMed  CAS  Google Scholar 

  • Schnierle B S, Gershon P D, Moss B (1994). Mutational analysis of a multifunctional protein, with mRNA 5′ cap-specific (nucleoside-2′-O-)-methyltransferase and 3′-adenylyltransferase stimulatory activities, encoded by vaccinia virus. J Biol Chem, 269(32): 20700–20706

    PubMed  CAS  Google Scholar 

  • Selisko B, Peyrane F F, Canard B, Alvarez K, Decroly E (2010). Biochemical characterization of the (nucleoside-2′O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). J Gen Virol, 91(Pt 1): 112–121

    Article  PubMed  CAS  Google Scholar 

  • Shi P Y, Kauffman E B, Ren P, Felton A, Tai J H, Dupuis A P 2nd, Jones S A, Ngo K A, Nicholas D C, Maffei J, Ebel G D, Bernard K A, Kramer L D (2001). High-throughput detection of West Nile virus RNA. J Clin Microbiol, 39(4): 1264–1271

    Article  PubMed  CAS  Google Scholar 

  • Shi P Y, Tilgner M, Lo M K (2002a). Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology, 296(2): 219–233

    Article  PubMed  CAS  Google Scholar 

  • Shi P Y, Tilgner M, Lo MK, Kent K A, Bernard K A (2002b). Infectious cDNA clone of the epidemic west nile virus from New York City. J Virol, 76(12): 5847–5856

    Article  PubMed  CAS  Google Scholar 

  • Shiryaev S A, Ratnikov B I, Chekanov A V, Sikora S, Rozanov D V, Godzik A, Wang J, Smith J W, Huang Z, Lindberg I, Samuel M A, Diamond M S, Strongin A Y (2006). Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem J, 393(Pt 2): 503–511

    PubMed  CAS  Google Scholar 

  • Shuman S (2001). Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol, 66: 1–40

    Article  PubMed  CAS  Google Scholar 

  • Smithburn B C, Hughes T P, Burke AW, Paul J H (1940). A neurotropic virus isolated from the blood of a native Uganda. Am J Trop Med Hyg, 20: 471–492

    Google Scholar 

  • Sutton G, Grimes JM, Stuart D I, Roy P (2007). Bluetongue virus VP4 is an RNA-capping assembly line. Nat Struct Mol Biol, 14(5): 449–451

    Article  PubMed  CAS  Google Scholar 

  • Tan B H, Fu J, Sugrue R J, Yap E H, Chan Y C, Tan Y H (1996). Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology, 216(2): 317–325

    Article  PubMed  CAS  Google Scholar 

  • Warrener P, Tamura J K, Collett M S (1993). RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. J Virol, 67(2): 989–996

    PubMed  CAS  Google Scholar 

  • Wengler G, Wengler G (1981). Terminal sequences of the genome and replicative-from RNA of the flavivirus West Nile virus: absence of poly(A) and possible role in RNA replication. Virology, 113(2): 544–555

    Article  PubMed  CAS  Google Scholar 

  • Wengler G, Wengler G (1991). The carboxy-terminal part of the NS 3 protein of theWest Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology, 184(2): 707–715

    Article  PubMed  CAS  Google Scholar 

  • Westaway E G, Brinton MA, Gaidamovich S Y, Horzinek MC, Igarashi A, Kaariainen L, Lvov D K, Porterfield J S, Russell P K, Trent D W (1985). Flaviviridae Intervirol, 24: 183–192

    Article  CAS  Google Scholar 

  • WHO (2009a). Dengue factsheet. http://www.who.int/mediacentre/factsheets/fs117/en/

  • WHO (2009b). Immunization, vaccines and biologicals: Japanese encephalitis. http://www.who.int/nuvi/je/en/

  • WHO (2009c). Yellow fever factsheet. http://www.who.int/mediacentre/factsheets/fs100/en/

  • Yu I M, Zhang W, Holdaway H A, Li L, Kostyuchenko V A, Chipman P R, Kuhn R J, Rossmann M G, Chen J (2008). Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319(5871): 1834–1837

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhou L, Cheng X (2000). Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J, 19(14): 3509–3519

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard K A, Shi P Y, Li H (2007). Structure and function of flavivirus NS5 methyltransferase. J Virol, 81(8): 3891–3903

    Article  PubMed  CAS  Google Scholar 

  • Zubieta C, He X Z, Dixon R A, Noel J P (2001). Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Biol, 8(3): 271–279

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31(13): 3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmin Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Dong, H., Chen, H. et al. Flavivirus RNA cap methyltransferase: structure, function, and inhibition. Front. Biol. 5, 286–303 (2010). https://doi.org/10.1007/s11515-010-0660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-010-0660-y

Keywords

Navigation