Skip to main content
Log in

Glycosyltransferases: key players involved in the modification of plant secondary metabolites

  • Review
  • Published:
Frontiers of Biology in China

Abstract

Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail. Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites, and plays a key role in maintaining cell homeostasis, thus likely participating in the regulation of plant growth, development and in defense responses to stress environments. With advances in plant genome projects and the development of novel technologies in analyzing gene function, significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases, and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops. In this review, we summarize the current research, highlighting the possible biological roles, of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowles D, Isayenkova J, Lim E K, Poppenberger B (2005). Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol, 8: 254–263

    Article  PubMed  CAS  Google Scholar 

  • Cao P J, Bartley L E, Jung K H, Ronald P C (2008). Construction of a rice glycosyltransferase phylogenomic database and identification of rice-diverged glycosyltransferases. Molecular Plant, 1: 858–877

    Article  CAS  Google Scholar 

  • Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P (2002). Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell, 14: 1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Creelman R A, Mullet J E (1997). Biosynthesis and action of jasmonates in plants. Plant Mol Biol, 48: 355–381

    Article  CAS  Google Scholar 

  • Frydman A, Weisshaus O, Bar-Peled M, Huhman D V, Sumner L W, Marin F R, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2004). Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1, 2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J, 40: 88–100

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003). Biosynthesis and metabolism of brassinosteroids. Plant Biol, 54: 137–164

    Article  CAS  Google Scholar 

  • He X Z, Wang X, Dixon R A (2006). Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (Iso)flavonoid glycosylation. J Biol Chem, 281: 34441–34447

    Article  PubMed  CAS  Google Scholar 

  • Hou B, Lim E K, Higgins G S, Bowles D J (2004). N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem, 279: 47822–47832

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Hughes M A (1994). Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava. DNA Seq, 5: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Jackson R G, Lim E K, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford D A, Bowles D J (2001). Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem, 276: 4350–4356

    Article  PubMed  CAS  Google Scholar 

  • Jackson R G, Kowalczyk M, Li Y, Higgins G, Ross J, Sandberg G, Bowles D J (2002). Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterization of transgenic lines. Plant J, 32: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Jones P, Messner B, Nakajima J, Schaffner A R, Saito K (2003). UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem, 278: 43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Jones P, Vogt T (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta, 213: 164–174

    Article  PubMed  CAS  Google Scholar 

  • Karim M R, Hashinaga F (2002). Preparation and properties of immobilized pummelo limonoid glucosyltransferase. Process Biochem, 38: 809–814

    Article  CAS  Google Scholar 

  • Kleczkowski K, Schell J (1995). Phytohormone conjugates: nature and function. Plant Sci, 14: 283–298

    CAS  Google Scholar 

  • Knofel H D, Schwarzkopf E, Muller P, Sembdner G (1984). Enzymic glucosylation of gibberellins. J Plant Growth Regul, 3: 127–140

    Article  Google Scholar 

  • Kristensen C, Morant M, Olsen C E, Ekstrom C T, Galbraith D W, Moller B L, Bak S (2005). Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA, 102: 1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Lanot A, Hodge D, Jackson R G, George G L, Elias L, Lim E K, Vaistij F E, Bowles D J (2006). The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J, 48: 286–295

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Baldauf S, Lim E K, Bowles D J (2001). Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem, 276: 4338–4343

    Article  PubMed  CAS  Google Scholar 

  • Lim E K (2005). Plant glycosyltransferases: their potential as novel biocatalysts. Chem Eur J, 11: 5486–5494

    Article  CAS  Google Scholar 

  • Lim E K, Bowles D J (2004). A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J, 23: 2915–2922

    Article  PubMed  CAS  Google Scholar 

  • Lim E K, Doucet C J, Hou B, Jackson R G, Abrams S R, Bowles D J (2005)a. Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrahedron: Asymmetry, 16: 143–147

    Article  CAS  Google Scholar 

  • Lim E K, Doucet C J, Li Y, Elias L, Worrall D, Spencer S P, Ross J, Bowles D J (2002). The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem, 277: 586–592

    Article  PubMed  CAS  Google Scholar 

  • Lim E K, Jackson R G, Bowles D J (2005)b. Identification and characterisation of Arabidopsis glycosyltransferases capable of glucosylating coniferyl aldehyde and sinapyl aldehyde. FEBS Lett, 579: 2802–2806

    Article  PubMed  CAS  Google Scholar 

  • Lim E K, Li Y, Parr A, Jackson R, Ashford D A, Bowles D J (2001). Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem, 276: 4344–4349

    Article  PubMed  CAS  Google Scholar 

  • Loutre C, Dixon D P, Brazier M, Slater M, Cole D J, Edwards R (2003). Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant J, 34: 485–493

    Article  PubMed  CAS  Google Scholar 

  • Matros A, Mock H P (2004). Ectopic expression of a UDP-glucose: phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with Potato Virus Y. Plant Cell Physiol, 45: 1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Messner B, Thulke O, Schaffner A R (2003). Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta, 217: 138–146

    PubMed  CAS  Google Scholar 

  • Mok D W S, Mok M C (2001). Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol, 52: 89–118

    Article  PubMed  CAS  Google Scholar 

  • Moraga A R, Nohales P F, Perez J A, Gomez-Gomez L (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219: 955–966

    Article  PubMed  CAS  Google Scholar 

  • Paquette S, Moller B L, Bak S (2003). On the origin of family 1 plant glycosyltransferases. Phytochem, 62: 399–413

    Article  CAS  Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Gloss J, Luschnig C, Adam G (2003). Detoxification of the fusarium mycotoxin deoxynivalenol by a UDPglucosyltransferase from Arabidopsis thaliana. J Biol Chem, 278: 47905–47914

    Article  PubMed  CAS  Google Scholar 

  • Poppenberger B, Fujioka S, Soeno K, George G L, Vaistij F E, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D J (2005). The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA, 102: 15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Quiel J A, Bender J (2003). Glucose conjugation of anthranilate by the Arabidopsis UGT74F2 glucosyltransferase is required for tryptophan mutant blue fluorescence. J Biol Chem, 278: 6275–6281

    Article  PubMed  CAS  Google Scholar 

  • Richman A, Swanson A, Humphrey T, Chapman R, McGarvey B, Pocs R, Brandle J (2005). Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J, 41: 56–67

    Article  PubMed  CAS  Google Scholar 

  • Rodo A P, Brugiere N, Vankova R, Malbeck J, Olson J M, Haines S C, Martin R C, Habben J E, Mok D W S, Mok M C (2008). Overexpression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. Journal of Experimental Botany, 59: 2673–2686

    Article  CAS  Google Scholar 

  • Ross J, Li Y, Lim E K, Bowles D J (2001). Higher plant glycosyltransferases. Genome Biol, 2: 30041–30046

    Article  Google Scholar 

  • Sandrock R W, VanEtten H D (1998). Fungal sensitivity to and enzymatic degradation of the phytoanticipin alpha-tomatine. Phytopathol, 88: 137–143

    Article  CAS  Google Scholar 

  • Schneider G, Schliemann W (1994). Gibberellin conjugates: an overview. Plant Growth Regul, 15: 247–260

    Article  CAS  Google Scholar 

  • Shao H, He X, Achinine L, Blount J W, Dixon R A, Wang X (2005). Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell, 17: 3141–3154

    Article  PubMed  CAS  Google Scholar 

  • Taguchi G, Yazawa T, Hayashida N, Okazaki M (2001). Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin. Eur J Biochem, 268: 4086–4094

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai M Y, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe D B, Kitayama M, Noji M, Yamazaki M, Saito K (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J, 42: 218–235

    Article  PubMed  CAS  Google Scholar 

  • Von R U, Huttl R, Lottspeich F, Gierl A, Frey M (2001). Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J, 28: 633–642

    Article  Google Scholar 

  • Weis M, Lim E K, Bruce N C, Bowles D J (2008). Engineering and kinetic characterisation of two glucosyltransferases from Arabidopsis thaliana. Biochimie, 90: 830–834

    Article  PubMed  CAS  Google Scholar 

  • Woodward A W, Bartel B (2005). Auxin: regulation, action, and interaction. Ann Bot, 95: 707–735

    Article  PubMed  CAS  Google Scholar 

  • Xu Z J, Nakajima M, Suzuki Y, Yamaguchi I (2002). Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol, 129: 1285–1295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingkai Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Hou, B. Glycosyltransferases: key players involved in the modification of plant secondary metabolites. Front. Biol. China 4, 39–46 (2009). https://doi.org/10.1007/s11515-008-0111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-008-0111-1

Keywords

Navigation