Skip to main content
Log in

Differentiation of Indica-Japonica rice revealed by insertion/deletion (InDel) fragments obtained from the comparative genomic study of DNA sequences between 93-11 (Indica) and Nipponbare (Japonica)

  • Research Article
  • Published:
Frontiers of Biology in China

Abstract

DNA polymorphisms from nucleotide insertion/deletions (InDels) in genomic sequences are the basis for developing InDel molecular markers. To validate the InDel primer pairs on the basis of the comparative genomic study on DNA sequences between an Indica rice 93-11 and a Japonica rice Nipponbare for identifying Indica and Japonica rice varieties and studying wild Oryza species, we studied 49 Indica, 43 Japonica, and 24 wild rice accessions collected from ten Asian countries using 45 InDel primer pairs. Results indicated that of the 45 InDel primer pairs, 41 can accurately identify Indica and Japonica rice varieties with a reliability of over 80%. The scatter plotting data of the principal component analysis (PCA) indicated that: (i) the InDel primer pairs can easily distinguish Indica from Japonica rice varieties, in addition to revealing their genetic differentiation; (ii) the AA-genome wild rice species showed a relatively close genetic relationship with the Indica rice varieties; and (iii) the non-AA genome wild rice species did not show evident differentiation into the Indica and Japonica types. It is concluded from the study that most of the InDel primer pairs obtained from DNA sequences of 93-11 and Nipponbare can be used for identifying Indica and Japonica rice varieties, and for studying genetic relationships of wild rice species, particularly in terms of the Indica-Japonica differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blair M W, Panaud O, McCouch S R (1999). Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). TAG, 98(5):780–782

    Article  CAS  Google Scholar 

  • Chang T T (1976). The origin, evolution, cultivation, dissemination and diversification of Asian and African rices. Euphytica, 25: 435–441

    Article  Google Scholar 

  • Chang T T (1984). Conservation of rice genetic resources: Luxury or necessity? Science, 224(4646): 251–256

    Article  PubMed  Google Scholar 

  • Cheng K S, Wang X K, Lu Y X (1984). The synthetical research and utilization of Yunnan rice resource: 2. the recognization of the Asian cultivated rice classification. Acta Agronomica Sinica, 10(4): 271–279 (in Chinese)

    Google Scholar 

  • Glaszmann J C (1987). Isozymes and classification of Asian rice varieties. Theoretical and Applied Genetics, 74: 21–30

    Article  CAS  Google Scholar 

  • Hilbe J M (2003). A review of current SPSS products: SPSS 12, Sigmaplot 8.02, SigmaStat 3.0, Part 1. American Statistician, 57(4): 310–315

    Google Scholar 

  • Huang C P, Wu L M, Xiang Y (2003). Application of molecular marking technology in rice breeding. Acta Agriculturae Universitis Jiangxiensis, 25(3): 423–428 (in Chinese)

    CAS  Google Scholar 

  • Jander G, Norris S R, Rounsley S D (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiology, 129: 440–450

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Li J Q, Xu Z J (2003). The advancement of hybrid breeding between indica and japonica rices. Jilin Agricultural Sciences, 28(1): 9–14 (in Chinese)

    Google Scholar 

  • Long W H, Xu M H (2002). RAPD-based genetic difference between indica rice and japonica rice. Journal of Yunnan Agricultural University, 17(3): 245–247 (in Chinese)

    Google Scholar 

  • Lu B R, Zheng K L, Qian H R (2002). Genetic differentiation of wild relatives of rice as assessed by RFLP analysis. Theoretical and Applied Genetics, 106: 101–106

    PubMed  CAS  Google Scholar 

  • Morishima H, Oka H I (1981). Phylogenetic differentiation of cultivated rice. XXII. Numerable evaluation of the Indica-Japonica differentiation. Japanese Journal of Breeding, 31: 402–413

    Google Scholar 

  • Murray M G, Thompson W F (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Normile D (1997). Archaeology: Yangtze seen as earliest rice site. Science, 275(5298): 309–309

    Article  CAS  Google Scholar 

  • Petrie H (2002). Review of STATISTICA 6.0. British Journal of Mathematical and Statistical Psychology, 55: 391–392

    Article  Google Scholar 

  • Shen Y J, Jiang H, Jin J P (2004). Development of Genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiology, 135: 1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Song Z P, Xu X, Wang B (2003). Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. TAG, 107: 1492–1499

    Article  PubMed  CAS  Google Scholar 

  • Sun C Q, Wang X K, Yoshimura A (2002). Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). TAG, 104(8): 1335–1345

    PubMed  CAS  Google Scholar 

  • Wang Z Y, Tanksley S D (1989). Restriction fragment length polymorphism in Oryza sativa L. Genome, 32: 1113–1118

    CAS  Google Scholar 

  • Wang J, Yu J, Wang J (2003). Systematical research of rice genome based on the whole genome sequence. World Sci-tech R&D. 25(6): 35–41 (in Chinese)

    Google Scholar 

  • Yu J, Hu S N, Wang J (2001). The complete sequence draft of Oryza sativa ssp. Indica. Chinese Science Bulletin, 46(23): 1937–1941 (in Chinese)

    Article  CAS  Google Scholar 

  • Zhang Q F, Maroof M A S, Lu T Y (1992). Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. TAG, 83: 495–499

    Google Scholar 

  • Zhu Z F, Xu M H (2002). Comparison of the genetic diversity of common wild rice and cultivated rice using SSR markers. Scientia Agricultura Sinica, 35(12): 1437–1441 (in Chinese)

    CAS  Google Scholar 

  • Zhu M Y, Wang Y Y, Zhu Y Y (2004). Estimating genetic diversity of rice landraces from Yunnan by SSR assay and its implication for conservation. Acta Botanica Sinica, 46(12): 1458–1467

    CAS  Google Scholar 

  • Zhuang J Y, Qian H R, Lin H X (1995). RFLP-based analysis of the origin and differentiation of Oryza sativa L. Chinese Journal of Rice Science, 9(3): 135–140 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Baorong.

Additional information

Translated from Journal of Fudan University (Natural Science), 2006, 45(3): 309–315 [译自: 复旦学报(自然科学版)]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X., Liu, J., Qiu, Y. et al. Differentiation of Indica-Japonica rice revealed by insertion/deletion (InDel) fragments obtained from the comparative genomic study of DNA sequences between 93-11 (Indica) and Nipponbare (Japonica). Front. Biol. China 2, 291–296 (2007). https://doi.org/10.1007/s11515-007-0042-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-007-0042-2

Keywords

Navigation