Skip to main content
Log in

Ultrasonic Treatment Effect on Enzymolysis Kinetics and Activities of ACE-Inhibitory Peptides from Oat-Isolated Protein

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Pretreatment of oat protein with ultrasound showed excellent prospects in increasing the efficiencies of enzymatic hydrolysis and inhibitory activities of peptides against angiotensin converting enzyme (ACE). The mechanism of the ultrasound pretreatment on enhancement of protein hydrolysis rate and the characterization of the enzymolysis process was investigated. The Michaelis-Menten model was used to study the effects of ultrasound on the hydrolysis rate. An ordered sequential bi-substrate reaction mechanism model was applied to describe the characteristics of enzymolysis of the protein with ultrasonic pretreatment. The protein concentration and the enzyme loading were factors in this model. The kinetic parameters of the models were estimated by experimental results and evaluated. The results showed that ultrasonic power, time and enzymolysis time greatly influenced the degree of hydrolysis and ACE inhibitory activities of the peptides. The best conditions for hydrolysis and ACE inhibitory activities were 750 W, 20 min of sonication followed by 60 min of enzymolysis. After the treatment, the hydrolysis rate and the ACE inhibitory activities of peptides were significantly (P < 0.001) increased by 32.1 and 53.8 %, respectively compared to the samples without ultrasonic pretreatment. The Michaelis constant K m indicated the ultrasonic treatment enhanced the affinities between the alcalase and oat protein. The enzymolysis kinetic model fitted well the enzyme catalyzed hydrolysis trend for the ultrasonic pretreated oat protein. The model provided a theoretical basis for describing the complex enzymatic process and preparing the ACE inhibitory peptides efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Butt, M. Tahir-Nadeem, M.K.I. Khan, R. Shabir, M.S. Butt, Oat: unique among the cereals. Eur. J. Nutr. 47, 68 (2008)

    Article  CAS  Google Scholar 

  2. L. Mirmoghtadaie, M. Kadivar, M. Shahedi, Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chem. 114, 127 (2009)

    Article  CAS  Google Scholar 

  3. Y.V. Wu, K.R. Sexson, J.E. Cluskey, G.E. Inglett, Protein isolate from high-protein oats: preparation, composition and properties. J. Food Sci. 42, 1383 (1977)

    Article  CAS  Google Scholar 

  4. J.M. Keenan, J.J. Pins, C. Frazel, A. Moran, L. Turnquist, Oat ingestion reduces systolic and diastolic blood pressure in patients with mild or borderline hypertension: a pilot trial. J. Fam. Pract. 51, 369 (2002)

    Google Scholar 

  5. K.C. Maki, R. Galant, P. Samuel, J. Tesser, M.S. Witchger, J.D. Ribaya-Mercado, J.B. Blumberg, J. Geohas, Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur. J. Clin. Nutr. 61, 786 (2006)

    Article  Google Scholar 

  6. I.W.Y. Cheung, S. Nakayama, M.N. Hsu, A.G. Samaranayaka, E.C. Li-Chan, Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J. Agric. Food Chem. 57, 9234 (2009)

    Article  CAS  Google Scholar 

  7. C.K. Hyun, H.K. Shin, Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Process Biochem. 36, 65 (2000)

    Article  CAS  Google Scholar 

  8. H. Fujita, T. Yamagami, K. Ohshima, Effects of an ACE-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutr. Res. 21, 1149 (2001)

    Article  CAS  Google Scholar 

  9. H.G. Byun, S.K. Kim, Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochem. 36, 1155 (2001)

    Article  CAS  Google Scholar 

  10. W. Qu, H. Ma, J. Jia, R. He, L. Luo, Z. Pan, Enzymolysis kinetics and activities of ACE inhibitory peptides from wheat germ protein prepared with SFP ultrasound-assisted processing. Ultrason. Sonochem. 19, 1021 (2012)

    Article  CAS  Google Scholar 

  11. J. Jia, H. Ma, W. Zhao, Z. Wang, W. Tian, L. Luo, R. He, The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem. 119, 336 (2010)

    Article  CAS  Google Scholar 

  12. C. Dai, H. Ma, X. Gu, J. Tang, Ultrasound-accelerated enzymatic hydrolysis of defatted larva flour of Tenebrio molitor (L.). J. Food Agric. Environ. 9, 401 (2011)

    Google Scholar 

  13. D.L. Miller, Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emissions. Ultrasonics 19, 217 (1981)

    Article  Google Scholar 

  14. R.A. Torres, C. Pétrier, E. Combet, M. Carrier, C. Pulgarin, The extraction of rutin from flower buds of Sophora japonica. Ultrason. Sonochem. 8, 299 (2001)

    Article  Google Scholar 

  15. E. Riera, Y. Golas, A. Blanco, J.A. Gallego, M. Blasco, A. Mulet, Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason. Sonochem. 11, 241 (2004)

    Article  CAS  Google Scholar 

  16. S. Maruyama, S. Miyoshi, T. Kaneko, H. Tanaka, Angiotensin I-converting enzyme inhibitory activities of synthetic peptides related to the tandem repeated sequence of a maize endosperm protein. Agric. Biol. Chem. 53, 1077 (1989)

    Article  CAS  Google Scholar 

  17. W. Qu, H. Ma, B. Liu, R. He, Z. Pan, E.E. Abano, Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment. Ultrason. Sonochem. 20, 1408 (2013)

    Article  CAS  Google Scholar 

  18. J.H. Chen, L. Tao, J. Li, W.H. Zhu, Y.S. Yuan, Biochemistry experiment (Science Press, Beijing, 2003), pp. 59–61

    Google Scholar 

  19. V. Vermeirssen, J. Van Camp, W. Verstraete, Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J. Biochem Biophys Methods 51, 75 (2002)

    Article  CAS  Google Scholar 

  20. J. Adler-Nissen, Enzymic hydrolysis of food proteins (Elsevier Applied Science Publishers, New York, 1986), p. 427

    Google Scholar 

  21. D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger principles of biochemistry, 5th edn. (Macmillan, London, 2008)

    Google Scholar 

  22. M.C. Marquez, M.A. Vazquez, Modeling of enzymatic protein hydrolysis. Process Biochem. 35, 111 (1999)

    Article  CAS  Google Scholar 

  23. P. Gonzalez-Tello, F. Camacho, E. Jurado, M.P. Paez, E.M. Guadix, Enzymatic hydrolysis of whey proteins: 1. Kinetic models. Biotechnol. Bioeng. 44, 523 (1994)

    Article  CAS  Google Scholar 

  24. A. Alemán, B. Giménez, E. Pérez-Santin, M.C. Gómez-Guillén, P. Montero, Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chem. 125, 334 (2011)

    Article  Google Scholar 

  25. Y. Saito, K. Wanezaki Nakamura, A. Kawato, S. Imayasu, Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotechnol. Biochem. 58, 1767 (1994)

    Article  CAS  Google Scholar 

  26. İ. Gülseren, D. Güzey, B.D. Bruce, J. Weiss, Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason. Sonochem. 14, 173 (2007)

    Article  Google Scholar 

  27. A.R. Jambrak, T.J. Mason, V. Lelas, Z. Herceg, I.L. Herceg, Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J. Food Eng. 86, 281 (2008)

    Article  CAS  Google Scholar 

  28. H.G. Byun, S.K. Kim, Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol. 35, 239 (2002)

    Article  CAS  Google Scholar 

  29. M.I. Mahmoud, Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol. 48, 89 (1994)

    CAS  Google Scholar 

  30. J. Adler-Nissen, Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27, 1256 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to extend their appreciation for the support provided by the National Natural Science Foundation of China (31301423), Youth Foundation of Jiangsu Province (BK2012287) and Scientific Innovation Research of College Graduate in Jiangsu Province CXZZ12_0699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haile Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Atungulu, G.G., Khir, R. et al. Ultrasonic Treatment Effect on Enzymolysis Kinetics and Activities of ACE-Inhibitory Peptides from Oat-Isolated Protein. Food Biophysics 10, 244–252 (2015). https://doi.org/10.1007/s11483-014-9375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9375-y

Keywords

Navigation