Skip to main content
Log in

Properties of Poly (ethylene oxide)/ whey Protein Isolate Nanofibers Prepared by Electrospinning

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

A mixture of solutions of whey protein isolate (WPI) and poly (ethylene oxide) (PEO) were employed to fabricate nanofibers by the electrospinning technique. The PEO/WPI ratio was varied in order to obtain PEO:WPI nanofibers with different concentrations of homopolymers. The dependence of morphology, viscosity, conductivity, surface tension, thermal and vibrational properties was studied as function of the PEO/WPI ratio. The results show that at higher viscosity, we obtained soft and smooth fibers with diameters ranging between 227 ± 36 nm and 264 ± 66 nm; while the solutions with low viscosity (<0.415 Pa · s), low surface tension (<55 mN/m) and high conductivity (>527 μScm−1) promote the formation of beads. The nanofibers were thermally stable for temperatures below 200 °C and the initial thermal degradation temperatures is slightly affected by the PEO:WPI ratio. The FTIR results revealed that the crosslinking favors the formation of fibers. Rosmarinus officialis extract was used for explore a possible application of the nanofibers as a delivery system. The dissolution rate of the rosemary extract from the nanofibers was measured in phosphate buffer solutions with pH of 1.2, 7.5 and 9.0. The total rosemary content was dissolved from the nanofibers, in the aqueous medium, on a time with depends on the pH of the buffer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.K. Yong, L. Jeong, Y. Ok Kang, S. Jin Lee, W. Ho Park, Adv. Drug Deliv. Rev. 61, 1020 (2009)

    Article  Google Scholar 

  2. T.J. Sill, H.A. von Recum, Biomaterials 29, 1989 (2008)

    Article  CAS  Google Scholar 

  3. A. Frenot, I.S. Chronakis, Curr. Opin. Colloid Interface Sci. 8, 64 (2003)

    Article  CAS  Google Scholar 

  4. A. Fernandez, S. Torres-Guiner, J.M. Lagaron, Food Hydrocoll. 23, 1427 (2009)

    Article  CAS  Google Scholar 

  5. D.L. Woerdeman, P. Ye, S. Shenoy, R.S. Parnas, G.E. Wnek, O. Trofimova, Biomacromolecules 6, 707 (2005)

    Article  CAS  Google Scholar 

  6. S. Alborzi, L-T. Lim, Y. Kakuda. J. Food Sci. 75, 100 (2009)

    Article  Google Scholar 

  7. S. Moon, R.J. Farris, Polym. Eng. Sci. 49, 1616 (2009)

    Article  CAS  Google Scholar 

  8. S. Torres-Giner, M.J. Ocio, J.M. Lagaron, Carbohydr. Polym. 77, 261 (2009)

    Article  CAS  Google Scholar 

  9. J. Li, A. He, J. Zheng, C.C. Han, Biomacromolecules 7, 2243 (2006)

    Article  CAS  Google Scholar 

  10. S. Wongsasulak, K.M. Kit, D.J. McClements, T. Yoovidhya, J. Weiss, Polymer 48, 448 (2007)

    Article  CAS  Google Scholar 

  11. J-W. Lu, Y-L. Zhu, Z-X. Guo, P. Hu, J. Yu, Polymer 47, 8026 (2006)

  12. X. Xu, L. Jiang, Z. Zhou, X. Wu, Y. Wang, Applied Materials and. Interfaces 4(4331) (2012)

  13. A. Aluigi, C. Vineis, A. Varesano, G. Mazzuchetti, F. Ferrero, C. Tonin, Eur. Polym. J. 44, 2465 (2008)

    Article  CAS  Google Scholar 

  14. A-C. Vega-Lugo, L-T. Lim, J Polym Sci Pol Phys 50, 1188 (2012)

  15. S.T. Sullivan, C. Tang, A. Kennedy, S. Talwar, Food Hydrocoll. 35, 36 (2014)

    Article  CAS  Google Scholar 

  16. F.E. Bailey, J.V. Koleske, Poly(ethylene oxide), New York; Academic Press, 1976

    Google Scholar 

  17. N.P. Desai, J.A. Hubbell, Biomaterials 12, 144 (1991)

    Article  CAS  Google Scholar 

  18. J.H. Lee, J. Kopecek, J.D. Andrade, J. Biomed. Mater. Res. 23, 351 (1989)

    Article  Google Scholar 

  19. S. Wei-Wei, Y. Shu-Juan, Z. Xin-An, Y. Xiao-Quan, J. Xiao, Food Res. Int. 44, 1052 (2011)

    Article  Google Scholar 

  20. E.G. Mahamadou, X. Shi-Ying, W.J. Zhang, Food Eng 83, 521 (2007)

    Article  Google Scholar 

  21. S. Kaya, A.J. Kaya, Food Eng 43, 91 (2000)

    Article  Google Scholar 

  22. M.B. Perez-Gago, J.M. Krochta, J. Food Sci. 66, 705 (2001)

    Article  CAS  Google Scholar 

  23. D.V. Ratnam, D.D. Ankola, V. Bhardwaj, D.K. Sahana, M.N.V.R. Kumar, J. Control. Release 113, 189 (2006)

    Article  CAS  Google Scholar 

  24. C. Soler Rivas, F.R. Marin, S. Santoyo, M.R. Garcia Risco, F.J. Señorians, G. Reglero, J. Agric. Food Chem. 58, 1144 (2010)

    Article  CAS  Google Scholar 

  25. Y. Yuan, Y. Gao, J. Zhao, L. Mao, Food Res. Int. 41, 61 (2008)

    Article  CAS  Google Scholar 

  26. Y. Ji, K. Ghosh, X.Z. Shu, B. Li, J.C. Sokolov, G.D. Prestwich, R.A.F. Clark, M.H. Rafailovich, Biomaterials 27, 3782 (2007)

    Article  Google Scholar 

  27. W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Polymer 45, 2959 (2004)

    Article  CAS  Google Scholar 

  28. J. Aneli, G. Zaikov, O. Mukbaniani, Mol. Cryst. Liq. Cryst. 554, 167 (2012)

    Article  CAS  Google Scholar 

  29. S. Ramakrishna, F. Kazutoshi, T. Wee-Eong, L. Telk-Cheng, M. Zuwei, In An Introduction to Electrospinning and Nanofibers (World Scientific Publishing, Singapore, 2005), pp. 22–90

    Book  Google Scholar 

  30. K. Ziani, C. Henrist, C. Jerome, A. Aqil, J.I. Maté, R. Cloots, Carbohydr. Polym. 83, 470 (2011)

    Article  CAS  Google Scholar 

  31. Doshi and Reneker. J Electrostat 35, 151 (1995)

  32. H. Fong, I. Chun, D.H. Reneker, Polymer 40, 4585 (1999)

    Article  CAS  Google Scholar 

  33. N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28, 325 (2010)

    Article  CAS  Google Scholar 

  34. P. Gupta, C. Elkins, T.E. Long, G.L. Wilkes, Polymer 46, 4799 (2005)

    Article  CAS  Google Scholar 

  35. C.P. Carrol, Y.L. Joo, Phys. Fluids 21, 103101 (2009)

    Article  Google Scholar 

  36. C. Krieguel, K.M. Kit, D.J. McClements, J. Weiss, Food Biophysics 4, 213 (2009)

    Article  Google Scholar 

  37. A. Körner, A. Larsson, L. Piculell, B. Wittgren, J. Pharm. Sci. 94, 759 (2005)

    Article  Google Scholar 

  38. A. Körner, L. Piculell, F. Iselau, B. Wittgren, A. Larsson, Macromolecules 14, 2699 (2009)

    Article  Google Scholar 

  39. R.M. Silverstein, G. Clayton Bassler, T.C. Morril, T.C. In Spectrometric Identification of Organic compounds, (John Wiley and Sons, Inc. 1991), pp. 91–131

  40. A. Barth, Biochim. Biophys. Acta 1767, 1073 (2007)

    Article  CAS  Google Scholar 

  41. Z.X. Meng, X.X. Xu, Zheng, W., Zhou, H.M., Li, L., Zheng, Y.F. and Lou, X. P, Colloids and Surfaces B:Biointerfaces, 84, 97 (2011)

  42. P. Acosta, J.M. Souza, Lobo, European J. J. Pharm. Sci. 13(123) (2001)

  43. L.L. Lao, N.A. Peppas, F.Y. Chiang Boey, S.S. Venkatraman, Int. J. Pharm. 418, 28 (2011)

    Article  CAS  Google Scholar 

  44. R. Srikar, A.L. Yarin, C.M. Megaridis, A.V. Bazilevsky, E. Kelley, Langmuir 24, 965 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from CONACyT under the project CB-2010-153245 is acknowledged The authors thanks Francisco López Martínez for his support in the mechanical tests. GRG thanks the support from FOMIX CONACyT No 170120. M. Zapata Torres thanks the hospitality of Dr. Peña Chapa at the sabbatical leave. Fruitful discussion with the Dr. R. Mis-Fernandez is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zapata-Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colín-Orozco, J., Zapata-Torres, M., Rodríguez-Gattorno, G. et al. Properties of Poly (ethylene oxide)/ whey Protein Isolate Nanofibers Prepared by Electrospinning. Food Biophysics 10, 134–144 (2015). https://doi.org/10.1007/s11483-014-9372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9372-1

Keywords

Navigation