Skip to main content
Log in

The Effect of Shear Rate on the Molecular Mass Distribution of Heat-Induced Aggregates of Mixtures Containing Whey Proteins and κ-Carrageenan

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The present study attempts to characterize the effect of shear rate on the composition, size, and molecular weight of the protein aggregates present in the upper layer after phase separation of 5% whey protein isolate (WPI) mixed with 0.5% κ-carrageenan (κ-car) at pH 7.0. The mixtures were heated and sheared under different shearing rates. Size exclusion chromatography (SEC), dynamic light scattering, and static light scattering were employed to describe the effect of shear rate on the size and molecular mass of WPI aggregates. At the molecular level, the size of the aggregates increased with an increase in shear rate. Shear rate also caused a decrease in turbidity of the upper layer after centrifugation. SEC combined with multi-angle laser light scattering showed that the WPI aggregates molecular mass was between 106and 107 g/mol when the shear rate increased from 3.6 to 86.4 s−1. Two empirical models described well the effect of shear rate on the size of WPI aggregates, and both models gave comparable results. By varying process parameters such as flow behavior and temperature, it is possible to control WPI aggregation and, thus, obtain aggregates with a range of different characteristics (size).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.J. Kronman, G.L. Holmes, F.M. Robbins, Biochim. Biophys. Acta 133, 46 (1967)

    CAS  Google Scholar 

  2. S. Mleko, E.C.Y. Li-Chan, S. Pikus, Food Res. Int. 30, 427 (1998). doi:10.1016/S0963-9969(97)00071-9

    Article  Google Scholar 

  3. X.J. Leng, S.L. Turgeon, Food Hydrocoll. 21, 1014 (2007). doi:10.1016/j.foodhyd.2006.03.013

    Article  CAS  Google Scholar 

  4. S.L. Turgeon, M. Beaulieu, Food Hydrocoll. 15, 583 (2001). doi:10.1016/S0268-005X(01)00064-9

    Article  CAS  Google Scholar 

  5. M.A. de la Fuente, Y. Hemar, H. Singh, Food Chem. 86, 1 (2004). doi:10.1016/j.foodchem.2003.08.008

    Article  CAS  Google Scholar 

  6. D.M. Mulvihill, J.E. Kinsella, Food Technol. 41, 102–111 (1987)

    CAS  Google Scholar 

  7. A. Syrbe, W.J. Bauer, H. Klostermeyer, Int. Dairy J. 8, 179 (1998). doi:10.1016/S0958-6946(98)00041-7

    Article  CAS  Google Scholar 

  8. S. Bourriot, C. Garnier, J.-L. Doublier, Int. Dairy J. 9, 353 (1999). doi:10.1016/S0958-6946(99)00087-4

    Article  CAS  Google Scholar 

  9. E. Dickinson, K. Pawlowsky, Food Hydrocoll. 12, 417 (1998). doi:10.1016/S0268-005X(98)00055-1

    Article  CAS  Google Scholar 

  10. M.M. Ould Eleya, S.L. Turgeon, Food Hydrocoll. 14, 29 (2000). doi:10.1016/S0268-005X(99)00043-0

    Article  CAS  Google Scholar 

  11. C. Schorsch, M.G. Jones, I.T. Norton, Food Hydrocoll. 13, 89 (1999). doi:10.1016/S0268-005X(98)00074-5

    Article  CAS  Google Scholar 

  12. V. Tolstoguzov, Biotechnol. Adv. 24, 626 (2006). doi:10.1016/j.biotechadv.2006.07.001

    Article  CAS  Google Scholar 

  13. S. Caserta, L. Sabetta, M. Simeone et al., Chem. Eng. Sci. 60, 1019 (2005). doi:10.1016/j.ces.2004.09.076

    Article  CAS  Google Scholar 

  14. C.R.T. Brown, T.J. Foster, I.T. Norton et al. in Biopolymer mixtures, ed. by S.E. Harding, S.E. Hill, J.R. Mitchell, (Nottingham University Press, Nottingham, 1995), pp. 32–47

    Google Scholar 

  15. M.M. Ould Eleya, X.J. Leng, S.L. Turgeon, Food Hydrocoll. 20, 946 (2006). doi:10.1016/j.foodhyd.2005.08.003

    Article  CAS  Google Scholar 

  16. P. Van Puyvelde, Y.A. Antonov, P. Moldenaers, Food Hydrocoll. 17, 327 (2003). doi:10.1016/S0268-005X(02)00094-2

    Article  CAS  Google Scholar 

  17. P. Walkenstrom, A.-M. Hermansson, Food Hydrocoll. 12, 77 (1998). doi:10.1016/S0268-005X(98)00048-4

    Article  CAS  Google Scholar 

  18. P. Walkenstrom, N. Panighetti, E. Windhab et al., Food Hydrocoll. 12, 469 (1998). doi:10.1016/S0268-005X(98)00065-4

    Article  CAS  Google Scholar 

  19. P. Walkenstrom, M. Nielsen, E. Windhab et al., J. Food Eng. 42, 15 (1999). doi:10.1016/S0260-8774(99)00098-9

    Article  Google Scholar 

  20. A.J. Steventon, A.M. Donald et al., Royal Society of Chemistry, Special Publication, 150, 133 (1994)

  21. A. Mora-Gutierrez, T.F. Kumosinski, H.M. Farrell, J. Agric. Food Chem. 46, 4987 (1998). doi:10.1021/jf980387d

    Article  CAS  Google Scholar 

  22. T.H.M. Snoeren, T.A.J. Payens, Milchwissenschaft 30, 393 (1975)

    CAS  Google Scholar 

  23. P.A. Spagnuolo, D.G. Dalgleish, H.D. Goff et al., Food Hydrocoll. 19, 371 (2005). doi:10.1016/j.foodhyd.2004.10.003

    Article  CAS  Google Scholar 

  24. I. Capron, T. Nicolai, C. Smith, Carbohydr. Polym. 40, 233 (1999). doi:10.1016/S0144-8617(99)00058-2

    Article  CAS  Google Scholar 

  25. P. Croguennoc, T. Nicolai, D. Durand et al., Langmuir 17, 4380 (2001). doi:10.1021/la001675i

    Article  CAS  Google Scholar 

  26. D.V. Zasypkin, E.E. Braudo, V.B. Tolsoguzov, Food Hydrocoll. 11, 145 (1997)

    Article  Google Scholar 

  27. P. Van Puyvelde, Y.A. Antonov, P. Moldenaers, Korea–Australia Rheology J. 14, 115 (2002)

    Google Scholar 

  28. M.F. Butler, Biomacromolecules 3, 1208 (2002). doi:10.1021/bm0255645

    Article  CAS  Google Scholar 

  29. P.J. Wyatt, Anal. Chim. Acta 272, 1 (1993). doi:10.1016/0003-2670(93)80373-S

    Article  CAS  Google Scholar 

  30. T. Wang, J.A. Lucey, J. Dairy Sci. 86, 3090 (2003)

    Article  CAS  Google Scholar 

  31. M. Beaulieu, M. Corredig, S.L. Turgeon et al., Food Hydrocoll. 19, 803 (2005). doi:10.1016/j.foodhyd.2004.10.025

    Article  CAS  Google Scholar 

  32. M.A.M. Hoffmann, G. Sala, C. Olieman et al., J. Agric. Food Chem. 45, 2949 (1997). doi:10.1021/jf9700788

    Article  CAS  Google Scholar 

  33. E.P. Schokker, H. Singh, L.K. Creamer, Int. Dairy J. 10, 843 (2000). doi:10.1016/S0958-6946(01)00022-X

    Article  CAS  Google Scholar 

  34. M.A. de la Fuente, Y. Hemar, M. Tamehana et al., Int. Dairy J. 12, 361 (2002). doi:10.1016/S0958-6946(02)00031-6

    Article  Google Scholar 

  35. S. Gaaloul, S.L. Turgeon, M. Corredig, Food Hydrocoll. (2008) (in press)

  36. M. Dubois, K.A. Gilles, J.K. Hamilton et al., Anal. Chem. 28, 350 (1956). doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  37. C. Jackson, L.M. Nilsson, P.J. Wyatt, J. Appl. Polym. Sci. App. Polym Symp. 99, 99 (1989)

    Google Scholar 

  38. J. Wen, T. Arakawa, J.S. Philo, Anal. Biochem. 240, 155 (1996). doi:10.1006/abio.1996.0345

    Article  CAS  Google Scholar 

  39. E. Dickinson, D.J. McClements, Advances in Food Colloids, (Blackie Academic & Professional, London, 1995), pp. 81–101

  40. P. Aymard, D. Durand, T. Nicolai, Int. J. Biol. Macromol. 19, 213 (1996). doi:10.1016/0141-8130(96)01130-0

    Article  CAS  Google Scholar 

  41. P. Havea, A.J. Carr, L.K. Creamer, J. Dairy Res. 71, 330 (2003). doi:10.1017/S002202990400024X

    Article  CAS  Google Scholar 

  42. T. Qingnong, P.A. Munro, O.J. McCarthy, Proceedings of the 18th Australian Chemical Engineering Conference, 1990, pp. 666–674

  43. T. Spiegel, M. Huss, H.G. Kessler, Dtsch. Milchwirtsch. 5, 152 (1997)

    Google Scholar 

  44. A.J. Steventon, A.M. Donald, L.F. Gladden, Biochem. Milk Prod. 150, 133 (1994)

    CAS  Google Scholar 

Download references

Acknowledgement

This work is financially supported by NSERC and Parmalat Canada. They are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie L. Turgeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaaloul, S., Corredig, M. & Turgeon, S.L. The Effect of Shear Rate on the Molecular Mass Distribution of Heat-Induced Aggregates of Mixtures Containing Whey Proteins and κ-Carrageenan. Food Biophysics 4, 13–22 (2009). https://doi.org/10.1007/s11483-008-9099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-008-9099-y

Keywords

Navigation