Skip to main content
Log in

The Effect of Maillard Conjugation of Deamidated Wheat Proteins with Low Molecular Weight Carbohydrates on the Secondary Structure of the Protein

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

A soluble isolated wheat protein fraction (sIWP) prepared from isolated wheat protein (30–35% deamidation) was incubated alone or in the presence of glucose or maltodextrins of various molecular weights (MW 1, 1.9 and 4.3 kDa) at 60 °C and 75% relative humidity to promote the formation of Maillard conjugates. The formation of Maillard conjugates was confirmed by the loss of available -NH2 groups on incubation. Approximately 3–4 carbohydrate moieties (glucose or low molecular weight carbohydrates in the commercial maltodextrin) were attached per mole of sIWP after 24 h incubation. Principal component analysis of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra measured in the dry state showed that there were no major structural changes among non-incubated sIWP, sIWP incubated alone, sIWP–glucose conjugate and sIWP–maltodextrin (MW 1 kDa) conjugate. Structural changes were observed when the protein was incubated with larger molecular weight maltodextrin (MW 1.9 kDa or 4.3 kDa). However, there were no detectable differences in their circular dichroism (CD) spectra suggesting the absence of conformational changes in proteins with or without attached carbohydrates in solution state. The differences between the FTIR and CD results are possibly due to differences in water content of the samples although pressure-induced changes to protein structure induced in the ATR cell and the influence of unreacted maltodextrins cannot be discounted. Attachment of low molecular weight carbohydrate moieties on a relatively large molecular weight protein (i.e. sIWP with average MW of 40.4 kDa) with low lysine content (average three per mole of protein) is not sufficient to have an impact on the secondary structure of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Day, M.A. Augustin, I.L. Batey, C.W. Wrigley, Wheat-gluten uses and industry needs Trends Food Sci. Technol. 17, 82–90 (2006) doi:10.1016/j.tifs.2005.10.003

    Article  CAS  Google Scholar 

  2. M.A. Augustin, P. Udabage, Influence of processing on functionality of milk and dairy proteins Adv. Food Nutr. Res. 53, 1–38 (2007) doi:10.1016/S1043-4526(07)53001-9

    Article  CAS  Google Scholar 

  3. P.R. Shewry, A.S. Tatham, J. Forde, M. Kreis, B.J. Miflin, The classification and nomenclature of wheat gluten proteins: a reassessment J. Cereal. Sci. 4, 97–106 (1986)

    Article  CAS  Google Scholar 

  4. M.C. Gianibelli, O.R. Larroque, F. MacRitchie, C.W. Wrigley, Biochemical, genetic, and molecular characterization of wheat endosperm proteins. (http://www.aaccnet.org/cerealchemistry/freearticle/gianibelli.pdf) (2001)

  5. A.S. Tatham, A.F. Drake, P.R. Shewry, Conformational studies of synthetic peptides corresponding to the repetitive region of the high molecular weight (HMW) glutenin subunits of wheat J. Cereal. Sci. 11, 189–200 (1990)

    CAS  Google Scholar 

  6. N. Matsudomi, A. Kato, K. Kobayashi, Conformation and surface properties of deamidated gluten Agric. Biol. Chem. 46, 1583–1586 (1982)

    CAS  Google Scholar 

  7. H. Jing, S. Nakamura, Production and use of Maillard products as oxidative stress modulators J. Med. Food 8, 291–298 (2005) doi:10.1089/jmf.2005.8.291

    Article  CAS  Google Scholar 

  8. C.M. Oliver, L.D. Melton, R.A. Stanley, Creating proteins with novel functionality via the Maillard reaction: a review Crit. Rev. Food Sci. Nutr. 46, 337–350 (2006) doi:10.1080/10408690590957250

    Article  CAS  Google Scholar 

  9. A. Kato, Industrial applications of Maillard-type protein–polysaccharide conjugates Food Sci. Technol. Res. 8, 193–199 (2002) doi:10.3136/fstr.8.193

    Article  CAS  Google Scholar 

  10. J.A. Gerrard, Protein–protein crosslinking in food: methods, consequences, applications Trends Food Sci. Technol. 13, 391–399 (2002) doi:10.1016/S0924-2244(02)00257-1

    Article  CAS  Google Scholar 

  11. S. Nakamura, A. Kato, K. Kobayashi, New antimicrobial characteristics of lysozyme–dextran conjugate J. Agric. Food Chem. 39, 647–650 (1991) doi:10.1021/jf00004a003

    Article  CAS  Google Scholar 

  12. M. Darewicz, J. Dziuba, The effect of glycosylation on emulsifying and structural properties of bovine β-casein Nahrung 45, 15–20 (2001) doi:10.1002/1521-3803(20010101)45:1<15::AID-FOOD15>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  13. T.J. Wooster, M.A. Augustin, Rheology of whey protein–dextran conjugate films at the air/water interface Food Hydrocoll. 21, 1072–1080 (2007) doi:10.1016/j.foodhyd.2006.07.015

    Article  CAS  Google Scholar 

  14. E.E. Babiker, Effect of chitosan conjugation on the functional properties and bactericidal activity of gluten peptides Food Chem. 79, 367–372 (2002) doi:10.1016/S0308-8146(02)00188-7

    Article  CAS  Google Scholar 

  15. A. Achouri, J.I. Boye, V.A. Yaylayan, F.K. Yeboah, Functional properties of glycated soy 11S glycinin Food Chem. Toxicol. 70, C269 (2005)

    CAS  Google Scholar 

  16. O. Cabodevila, S.E. Hill, H.J. Armstrong, I.D. Sousa, J.R. Mitchell, Gelation enhancement of soy protein isolate using the Maillard reaction and high temperatures J. Food Sci. 59, 872–875 (1994) doi:10.1111/j.1365-2621.1994.tb08147.x

    Article  CAS  Google Scholar 

  17. L. Campbell, V. Raikos, S.R. Euston, Modification of functional properties of egg-white proteins Nahrung 47, 369–376 (2003) doi:10.1002/food.200390084

    Article  CAS  Google Scholar 

  18. T.M. Wood, K.M. Bhat, Methods for measuring cellulase activities Methods Enzymol. 160, 87–112 (1988) doi:10.1016/0076-6879(88)60109-1

    Article  CAS  Google Scholar 

  19. M.S. Vigo, L.S. Malec, R.G. Gomez, R.A. Llosa, Spectrophotometric assay using o-phthaldialdehyde for determination of reactive lysine in dairy products Food Chem. 44, 363 (1992) doi:10.1016/0308-8146(92)90269-8

    Article  CAS  Google Scholar 

  20. I.L. Batey, R.B. Gupta, F. MacRitchie, Use of size-exclusion high-performance liquid chromatography in the study of wheat flour proteins: an improved chromatographic procedure Am. Assoc. Cereal. Chem. 68, 207–209 (1991)

    CAS  Google Scholar 

  21. J.T. Pelton, R.L. McLean, Spectroscopic methods for analysis of protein secondary structure Anal. Biochem. 277, 167–176 (2000) doi:10.1006/abio.1999.4320

    Article  CAS  Google Scholar 

  22. N.J. Greenfield, Methods to estimate the conformation of proteins and polypeptides from circular dichroism data Anal. Biochem. 235, 1–10 (1996) doi:10.1006/abio.1996.0084

    Article  CAS  Google Scholar 

  23. M. Mejri, B. Roge, A. BenSouissi, F. Michels, M. Mathlouthi, Effects of some additives on wheat gluten solubility: a structural approach Food Chem. 92, 7–15 (2005) doi:10.1016/j.foodchem.2004.07.021

    Article  CAS  Google Scholar 

  24. E. Linares, C. Larre, M. Lerneste, Y. Popineau, Emulsifying and foaming properties of gluten hydrolysates with an increasing degree of hydrolysis: role of soluble and insoluble fractions Cereal. Chem. 77, 414–420 (2000) doi:10.1094/CCHEM.2000.77.4.414

    Article  CAS  Google Scholar 

  25. D.M.R. Georget, P.S. Belton, Effects of temperature and water content on the secondary structure of wheat gluten studied by FTIR spectroscopy Biomacromolecules 7, 469–475 (2006) doi:10.1021/bm050667j

    Article  CAS  Google Scholar 

  26. B.W. Seabourn, O.K. Chung, P.A. Seib, P.R. Mathewson, Determination of secondary structural changes in gluten proteins during mixing using Fourier transform horizontal attenuated total reflectance spectroscopy J. Agric. Food Chem. 56, 4236–4243 (2008) doi:10.1021/jf703569b

    Article  CAS  Google Scholar 

  27. N. Wellner, P.S. Belton, A.S. Tatham, Fourier transform IR spectroscopic study of hydration-induced structure changes in the solid state of ω-gliadins Biochem. J. 319, 741–747 (1996)

    CAS  Google Scholar 

  28. D.M.R. Georget, C. Underwood-Toscano, S.J. Powers, P.R. Shewry, P.S. Belton, Effect of variety and environmental factors on gluten proteins: an analytical, spectroscopic and rheological study J. Agric. Food Chem. 56, 1172–1179 (2008) doi:10.1021/jf072443t

    Article  CAS  Google Scholar 

  29. N. Guerrieri, F. Secundo, ATR-FT/IR Study on the interactions between gliadins and dextrin and their effects on protein secondary structure J. Agric. Food Chem. 53, 1757–1764 (2005) doi:10.1021/jf049061x

    Article  CAS  Google Scholar 

  30. S.M. Lievonen, T.J. Laaksonen, T.H. Roos, Nonenzymatic browning in food models in the vicinity of the glass transition: effects of fructose, glucose, and xylose as reducing sugar J. Agric. Food Chem. 50, 7034–7041 (2002) doi:10.1021/jf0255275

    Article  CAS  Google Scholar 

  31. L.N. Bell, D.E. Touma, K.L. White, Y.H. Chen, Glycine loss and Maillard browning as related to the glass transition in a model food system J. Food Sci. 63, 625–628 (1998) doi:10.1111/j.1365-2621.1998.tb17900.x

    Article  CAS  Google Scholar 

  32. S.E. Fayle, J.A. Gerrard, The Maillard reaction (The Royal Society of Chemistry, Cambridge, 2002)

    Google Scholar 

  33. J.M. Ames, The Maillard reaction, in Biochemistry of Food Proteins (Elsevier, London, 1992)

    Google Scholar 

  34. D.D. Kasarda, K.M. Woodard, A.E. Adalsteins, Resolution of high molecular weight glutenin subunits by a new SDS-PAGE system incorporating a neutral pH buffer Cereal. Chem. 75, 70–71 (1998) doi:10.1094/CCHEM.1998.75.1.70

    Article  CAS  Google Scholar 

  35. M.F. Webb, H.A. Naeem, K.A. Schmidt, Food protein functionality in a liquid system: a comparison of deamidated wheat protein with dairy and soy proteins J. Food Sci. 67, 2896–2902 (2002) doi:10.1111/j.1365-2621.2002.tb08835.x

    Article  CAS  Google Scholar 

  36. M. Akhtar, E. Dickinson, Whey protein–maltodextrin conjugates as emulsifying agents: an alternative to gum arabic Food Hydrocoll. 21, 607–616 (2007) doi:10.1016/j.foodhyd.2005.07.014

    Article  CAS  Google Scholar 

  37. W.N. Eigel, J.E. Butler, C.A. Ernstrom et al., Nomenclature of proteins of cow’s milk: fifth revision J. Dairy Sci. 67, 1599–1631 (1984)

    Article  CAS  Google Scholar 

  38. F.M. DuPont, R. Chan, R. Lopez, W.H. Vensel, Sequential extraction and quantitative recovery of gliadins, glutenins, and other proteins from small samples of wheat flour J. Agric. Food Chem. 53, 1575–1584 (2005) doi:10.1021/jf048697l

    Article  CAS  Google Scholar 

  39. J. Adrian, Handbook of Nutritive Value of Processed Food (CRC, Boca Raton, 1982)

    Google Scholar 

  40. S.Y. Lin, H.L. Chu, Y.S. Wei, Pressure-induced transformation of α-helix to β-sheet in the secondary structures of Amyloid β (1–40) peptide exacerbated by temperature J. Biomol. Struct. Dyn. 19, 619 (2002)

    CAS  Google Scholar 

  41. C. Mangavel, J. Barbot, Y. Popineau, J. Gueguen, Evolution of wheat gliadins conformation during film formation: a Fourier transform infrared study J. Agric. Food Chem. 49, 867–872 (2001) doi:10.1021/jf0009899

    Article  CAS  Google Scholar 

  42. F. Secundo, N. Guerrieri, ATR-FT/IR study on the interaction between gliadins and dextrin and their effects on protein secondary structure J. Agric. Food Chem. 53, 1757–1764 (2005) doi:10.1021/jf049061x

    Article  CAS  Google Scholar 

  43. F. Morgan, D. Molle, G. Henry et al., Glycation of bovine β-lactoglobulin: effect on the protein structure Int. J. Food Sci. Technol. 34, 429–435 (1999) doi:10.1046/j.1365-2621.1999.00318.x

    Article  CAS  Google Scholar 

  44. H. Enomoto, C.P. Li, K. Morizane et al., Glycation and phosphorylation of β-lactoglobulin by dry-heating: effect on protein structure and some properties J. Agric. Food Chem. 55, 2392–2398 (2007) doi:10.1021/jf062830n

    Article  CAS  Google Scholar 

  45. F. Chevalier, J.M. Chobert, M. Dalgalarrondo, Y. Choiset, T. Haertle, Maillard glycation of β-lactoglobulin induces conformation changes Nahrung 46, 58–63 (2002) doi:10.1002/1521-3803(20020301)46:2<58::AID-FOOD58>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  46. G. Lookhart, S. Bean, Handbook of Cereal Science and Technology (Marcel Dekker, NewYork, 2000)

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Geoff Dumsday from CSIRO Molecular & Health Technologies for the assistance in SDS-PAGE gel analysis and Mibel Aguilar and Sharon Unabia from Monash University for the access to the circular dichroism facility. B Wong gratefully acknowledges Food Science Australia for the provision of scholarship for his postgraduate study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Augustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, B.T., Day, L., McNaughton, D. et al. The Effect of Maillard Conjugation of Deamidated Wheat Proteins with Low Molecular Weight Carbohydrates on the Secondary Structure of the Protein. Food Biophysics 4, 1–12 (2009). https://doi.org/10.1007/s11483-008-9096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-008-9096-1

Keywords

Navigation