Skip to main content
Log in

Development of Nutritionally Enhanced Tortillas

  • Special Issue Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Large interest has recently risen in the development of “functional” foods, products that may provide a health benefit beyond the traditional nutrients. Foods rich in antioxidants and, simultaneously, characterized by a low glycemic index (GI), can reduce, through a double mechanism, the risk of increased postprandial oxidative stress, which is one of the constituent of the onset of several chronic diseases. Nutritionally enhanced tortillas were therefore developed by incorporating ingredients with well-documented nutritional functionality (carrots, soy, and wholemeal kamut) in a standard wheat tortillas formulation, in an attempt to create low GI and antioxidant-rich products while preserving sensory acceptability and physico-chemical properties. Five tortilla prototypes were developed and characterized for sensory acceptability, textural attributes, color, total antioxidant capacity, and in vivo GI. The simultaneous combination of carrot juice, soy, and wholemeal kamut resulted in a very interesting product that was not only the most acceptable by the consumers (although slightly harder than the standard control) but also showed the lowest GI and was relatively high in total antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.P. Mensink, A. Aro, E. Den Hond et al., Eur. J. Nutr. 42(l), 16–27 (2003)

    Google Scholar 

  2. G. Riccardi, B. Capaldo, O. Vaccaio, Curr. Opin. Clin. Nutr. Metab. Care 8(6), 630–635 (2005)

    Article  CAS  Google Scholar 

  3. E. Riboli, T. Norat, Am. J. Clin. Nutr. 78(3), 559S–569S (2003)

    CAS  Google Scholar 

  4. M. Meydani, N.Y. Ann, Acad. Sci. 1031, 271–279 (2004)

    Article  CAS  Google Scholar 

  5. N.I. Krinsky, Nutrition 17(10), 815–817 (2001)

    Article  CAS  Google Scholar 

  6. B. Halliwell, J. Rafter, A. Jenner, Am. J. Clin. Nutr. 81(1), 268S–276S (2005)

    CAS  Google Scholar 

  7. H.G. Liljeberg, A.K. Akerberg, I.M. Björck, Am. J. Clin. Nutr. 69(4), 647–655 (1999)

    CAS  Google Scholar 

  8. Y. Papanikolaou, H. Palmer, M.A. Binns, D.J. Jenkins, C.E. Greenwood, Diabetologia 49(5), 855–862 (2006)

    Article  CAS  Google Scholar 

  9. L. Monnier, E. Mas, C. Ginet et al., JAMA 295(14), 1681–1687 (2006)

    Article  CAS  Google Scholar 

  10. D.J. Jenkins, C.W. Kendall, A.R. Josse et al., J. Nutr. 136(12), 2987–2992 (2006)

    CAS  Google Scholar 

  11. A.B. Bello, S.O. Serna-Saldivar, R.D. Waniska, L.W. Rooney, Cereal Foods World 36(3), 315–322 (1991)

    Google Scholar 

  12. AOAC International. Official Methods of Analysis of AOAC International, 16th edn., 950.36 (1995)

  13. AOAC International. Official Methods of Analysis of AOAC International, 16th edn., 935.38 (1995)

  14. AOAC International. Official Methods of Analysis of AOAC International, 17th edn., 985.29 (2003)

  15. AOAC International. Official Methods of Analysis of AOAC International, 16th edn., 930.22 (1995)

  16. G. Jellineck, Sensory Evaluation of Food. Theory and Practice, Series in Food Science and Technology (E. Horwood, Chichester, England, 1985), pp. 252–287

    Google Scholar 

  17. F.P. Bejosano, F. Joseph, R.M. Lopez, N.N. Kelecki, R.D. Waniska, Cereal Chem. 82(3), 256–263 (2005)

    Article  CAS  Google Scholar 

  18. N. Pellegrini, D. Del Rio, B. Colombi, M. Bianchi, F. Brighenti, J. Agric. Food Chem. 51(1), 260–264 (2003)

    Article  CAS  Google Scholar 

  19. T.M. Wolever, H.H. Vorster, I. Björck et al., Eur. J. Clin. Nutr. 57(3), 475–482 (2003)

    Article  CAS  Google Scholar 

  20. S. Holt, A.V.A. Resurreccion, K.H. McWatters, J. Food Sci. 57(1), 121–127 (1992)

    Article  Google Scholar 

  21. P. Chinachoti, Food Tech. 1, 134–140 (1993)

    Google Scholar 

  22. E. Vittadini, L.C. Dickinson, P. Chinachoti, Carbohydr. Polym. 49(3), 261–269 (2002)

    Article  CAS  Google Scholar 

  23. E. Vittadini, L.C. Dickinson, J.P. Lavoie, X. Pham, P. Chinachoti, J. Agric. Food Chem. 51, 1647–1652 (2003)

    Article  CAS  Google Scholar 

  24. E. Vittadini, Y. Vodovotz, J. Food Sci. 68(6), 2022–2027 (2003)

    Article  CAS  Google Scholar 

  25. E. Vittadini, E.A. Clubbs, T.H. Shellhammer, Y. Vodovotz, J. Cereal Sci. 39, 109–117 (2004)

    Article  CAS  Google Scholar 

  26. E.A. Clubbs, E. Vittadini, T.H. Shellhammer, Y. Vodovotz, Innov. Food Sci. Emerg. Technol. 6, 304–309 (2005)

    Article  CAS  Google Scholar 

  27. A. Lodi, S. Tiziani, Y. Vodovotz, J. Agric. Food Chem. 55(14), 5850–5857 (2007)

    Article  CAS  Google Scholar 

  28. A. Lodi, A.M. Abduljalilb, Y. Vodovotz, Magn. Reson. Imaging 25, 1449–1458 (2007)

    Article  Google Scholar 

  29. G.A. Greendale, G. FitzGerald, M.H. Huang et al., Am. J. Epidemiol. 155(8), 746–754 (2002)

    Article  Google Scholar 

  30. F. Mariotti, S. Mahe, R. Benamouzig et al., J. Nutr. 129(11), 1992–1997 (1999)

    CAS  Google Scholar 

  31. L.H. Hoie, M. Guldstrand, A. Sjoholm et al., Adv. Ther. 24(2), 439–447 (2007)

    Article  CAS  Google Scholar 

  32. M.A. Hyder, R.C. Hoseney, K.F. Finney, M.D. Shogren, Cereal Chem. 51, 666–675 (1974)

    Google Scholar 

  33. D. Knorr, A.A. Betschart, Lebensm.-Wiss. Technol. 11, 198–201 (1978)

    Google Scholar 

  34. M.S. Brewer, S.M. Potter, G. Sprouls, M. Reinhard, J. Food. Qual. 15(4), 245–262 (1992)

    Article  CAS  Google Scholar 

  35. K.J. Ryan, C.L. Homco-Ryan, J. Jenson, K.L. Robbins, C. Prestat, M.S. Brewer, Cereal Chem. 79(3), 434–438 (2002)

    Article  CAS  Google Scholar 

  36. J. Gauthier, P. Ge’linas, R. Beauchemin, Int. J. Food Sci. Technol. 41(5), 596–599 (2006)

    Article  CAS  Google Scholar 

  37. J.A. Marlett, M.I. McBurney, J.L. Slavin, J. Am. Diet. Assoc. 102(7), 993–1000 (2002)

    Article  Google Scholar 

  38. F. Brighenti, S. Valtueña, N. Pellegrini et al., Br. J. Nutr. 93(5), 619–625 (2005)

    Article  CAS  Google Scholar 

  39. S. Valtueña, D. Del Rio, N. Pellegrini et al., Eur. J. Clin. Nutr. 61(1), 69–76 (2007)

    Article  CAS  Google Scholar 

  40. S. Valtueña, N. Pellegrini, D. Ardigò et al., Am. J. Clin. Nutr. 84(1), 136–142 (2006)

    Google Scholar 

  41. M. Lajous, W. Willett, E. Lazcano-Ponce et al., Cancer Causes Control 16(10), 1165–1169 (2005)

    Article  Google Scholar 

  42. J.P. Kirwan, D. Cyr-Campbell, W.W. Campbell, J. Scheiber, W.I. Evans, Metabolism 50(7), 849–855 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Greta Bonacini and Elena Curti for performing part of the experiments. This research was partially funded by the Italian Ministry for University and Research, Program “Rientro dei Cervelli,” D.M. no. 96, 23.04.2001, and by the Marie Curie IRG, Functional foods for space contract no. MIRG-CT-2004-006676.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Vittadini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scazzina, F., Del Rio, D., Serventi, L. et al. Development of Nutritionally Enhanced Tortillas. Food Biophysics 3, 235–240 (2008). https://doi.org/10.1007/s11483-008-9072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-008-9072-9

Keywords

Navigation