Skip to main content

Advertisement

Log in

Dimethyl Fumarate Prevents HIV-Induced Lysosomal Dysfunction and Cathepsin B Release from Macrophages

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy, affecting nearly half of HIV-infected patients worldwide. During HIV infection of macrophages secretion of the lysosomal protein, cathepsin B, is increased. Secreted cathepsin B has been shown to induce neurotoxicity. Oxidative stress is increased in HIV-infected patients, while antioxidants are decreased in monocytes from patients with HIV-associated dementia (HAD). Dimethyl fumarate (DMF), an antioxidant, has been reported to decrease HIV replication and neurotoxicity mediated by HIV-infected macrophages. Thus, we hypothesized that DMF will decrease cathepsin B release from HIV-infected macrophages by preventing oxidative stress and enhancing lysosomal function. Monocyte-derived macrophages (MDM) were isolated from healthy donors, inoculated with HIV-1ADA, and treated with DMF following virus removal. After 12 days post-infection, HIV-1 p24 and total cathepsin B levels were measured from HIV-infected MDM supernatants using ELISA; intracellular reactive oxygen and nitrogen species (ROS/RNS) were measured from MDM lysates, and functional lysosomes were assessed using a pH-dependent lysosomal dye. Neurons were incubated with serum-free conditioned media from DMF-treated MDM and neurotoxicity was determined using TUNEL assay. Results indicate that DMF reduced HIV-1 replication and cathepsin B secretion from HIV-infected macrophages in a dose-dependent manner. Also, DMF decreased intracellular ROS/RNS levels, and prevented HIV-induced lysosomal dysfunction and neuronal apoptosis. In conclusion, the improvement in lysosomal function with DMF treatment may represent the possible mechanism to reduce HIV-1 replication and cathepsin B secretion. DMF represents a potential therapeutic strategy against HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

This research was supported in part by grants from the National Institutes of Health: R25-GM061838 (LR, KC), R01MH083516 (LMM) U54MD007600 (LMM), R25-GM082406, SC1GM11369–01 (LMM), and University of Puerto Rico School of Medicine and Biomedical Sciences Deanships. We thank the Puerto Rico Clinical and Translational Research Consortium (PRCTRC) grant U54MD007587 from National Institute on Minority Health and Health Disparities (NIMHD) and the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health for the clinical support in obtaining samples from HIV-seronegative donors and for their partial support in obtaining the Nikon Eclipse E400, with a camera SPOT Insight QE and Fluorescence X-Cite Series 120 used in fluorescence assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loyda M. Meléndez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedure performed in studies involving human subjects were in accordance with the ethical standards the institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all subjects included in this study. This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosario-Rodríguez, L., Colón, K., Borges-Vélez, G. et al. Dimethyl Fumarate Prevents HIV-Induced Lysosomal Dysfunction and Cathepsin B Release from Macrophages. J Neuroimmune Pharmacol 13, 345–354 (2018). https://doi.org/10.1007/s11481-018-9794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-9794-5

Keywords

Navigation