Skip to main content

Advertisement

Log in

Dopaminergic Regulation of Innate Immunity: a Review

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Dopamine (DA) is a neurotransmitter in the central nervous system as well as in peripheral tissues. Emerging evidence however points to DA also as a key transmitter between the nervous system and the immune system as well as a mediator produced and released by immune cells themselves. Dopaminergic pathways have received so far extensive attention in the adaptive branch of the immune system, where they play a role in health and disease such as multiple sclerosis, rheumatoid arthritis, cancer, and Parkinson’s disease. Comparatively little is known about DA and the innate immune response, although DA may affect innate immune system cells such as dendritic cells, macrophages, microglia, and neutrophils. The present review aims at providing a complete and exhaustive summary of currently available evidence about DA and innate immunity, and to become a reference for anyone potentially interested in the fields of immunology, neurosciences and pharmacology. A wide array of dopaminergic drugs is used in therapeutics for non-immune indications, such as Parkinson’s disease, hyperprolactinemia, shock, hypertension, with a usually favorable therapeutic index, and they might be relatively easily repurposed for immune-mediated disease, thus leading to innovative treatments at low price, with benefit for patients as well as for the healthcare systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adluri RK, Singh AV, Skoyles J, Robins A, Parton J, Baker M, Mitchell IM (2010) The effect of fenoldopam and dopexamine on cytokine and endotoxin release following on-pump coronary artery bypass grafting: a prospective randomized double-blind trial. Heart Surg Forum 13:353–361. doi:10.1532/HSF98.20101073

    Article  Google Scholar 

  • Ahern DJ, Brennan FM (2011) The role of natural killer cells in the pathogenesis of rheumatoid arthritis: major contributors or essential homeostatic modulators? Immunol Lett 136:115–121. doi:10.1016/j.imlet.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  • Albizu L, Holloway T, González-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61:770–777. doi:10.1016/j.neuropharm.2011.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenburg SP, Martins MA, Silva PM, Bozza PT, Tibiriçá EV, Cordeiro RS, Castro-Faria-Neto HC (1995) Systemic neutrophilia observed during anaphylactic shock in rats is inhibited by dopaminergic antagonists. Int Arch Allergy Immunol 108:33–38

    Article  CAS  PubMed  Google Scholar 

  • Altfeld M, Gale JM Jr (2015) Innate immunity against HIV-1 infection. Nat Immunol 16:554–562. doi:10.1038/ni.3157

    Article  CAS  PubMed  Google Scholar 

  • Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. doi:10.1146/annurev-immunol-020711-074942

    Article  CAS  PubMed  Google Scholar 

  • Andersen PH, Gingrich JA, Bates MD, Dearry A, Falardeau P, Senogles SE, Caron MG (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci 11:231–236

    Article  CAS  PubMed  Google Scholar 

  • Arend WP (2001) The innate immune system in rheumatoid arthritis. Arthritis Rheum 44:2224–2234

    Article  CAS  PubMed  Google Scholar 

  • Aringer M, Günther C, Lee-Kirsch MA (2013) Innate immune processes in lupus erythematosus. Clin Immunol 147:216–222. doi:10.1016/j.clim.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  • Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A (2015) Vasopressors for the treatment of septic: systematic review and meta-analysis. PLoS One. doi:10.1371/journal.pone.0129305

  • Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, Han SH, Choi H, Kim KH, Moon M, Lee J, Kim M, Irimia D, Mook-Jung I (2014) Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol Aging 35:1286–1292. doi:10.1016/j.neurobiolaging.2014.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakota L, Ussif A, Jeserich G, Brandt R (2017) Systemic and network functions of the microtubule-associated protein tau: Implications for tau-based therapies Mol Cell Neurosci 16

  • Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, Feuerstein C (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res 23:204–212

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    Article  CAS  PubMed  Google Scholar 

  • Bayer BM, Daussin S, Hernandez M, Irvin L (1990) Morphine inhibition of lymphocyte activity is mediated by an opioid dependent mechanism. Neuropharmacology 29:369–374

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi:10.1124/pr.110.002642

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors - IUPHAR review 13. Br J Pharmacol 172:1–23. doi:10.1111/bph.12906

    Article  CAS  PubMed  Google Scholar 

  • Beck GC, Brinkkoetter P, Hanusch C, Schulte J, van Ackern K, van der Woude FJ, Yard BA (2004) Clinical review: immunomodulatory effects of dopamine in general inflammation. Crit Care 8:485–491. doi:10.1186/cc2879

    Article  PubMed  Google Scholar 

  • Bencsics A, Sershen H, Baranyi M, Hashim A, Lajtha A, Vizi ES (1997) Dopamine, as well as norepinephrine, is a link between noradrenergic nerve terminals and splenocytes. Brain Res 761:236–243

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B, Schiller M, Green NL, Admon Y, Hakim F, Shen-Orr SS, Rolls A (2016) Activation of the reward system boosts innate and adaptive immunity. Nat Med 22:940–944. doi:10.1038/nm.4133

    Article  CAS  PubMed  Google Scholar 

  • Bergquist J, Ohlsson B, Tarkowski A (2000) Nuclear factor-kappa B is involved in the catecholaminergic suppression of immunocompetent cells. Ann N Y Acad Sci 917:281–289

    Article  CAS  PubMed  Google Scholar 

  • Bernton EW, Meltzer MS, Holaday JW (1988) Suppression of macrophage activation and T-lymphocyte function in hypoprolactinemic mice. Science 239:401–404

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98. doi:10.1016/j.pneurobio.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  • Blum K, Thanos PK, Gold MS (2014) Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol 5:919. doi:10.3389/fpsyg.2014.00919

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodea LG, Wang Y, Linnartz-Gerlach B, Kopatz J, Sinkkonen L, Musgrove R, Kaoma T, Muller A, Vallar L, Di Monte DA, Balling R, Neumann H (2014) Neurodegeneration by activation of the microglial complement–phagosome pathway. J Neurosci 34:8546–8556. doi:10.1523/JNEUROSCI.5002-13.2014

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (2003) Antimicrobial peptides: basic facts and emerging concepts. J Intern Med 254:197–215. doi:10.1046/j.1365-2796.2003.01228.x

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura J, Navarro G, Casadó-Anguera V, Azdad K, Rea W, Moreno E, Brugarolas M, Mallol J, Canela EI, Lluís C, Cortés A, Volkow ND, Schiffmann SN, Ferré S, Casadó V (2015) Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc Natl Acad Sci U S A 112:E3609–E3618. doi:10.1073/pnas.1507704112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boneberg EM, von Seydlitz E, Pröpster K, Watzl H, Rockstroh B, Illges H (2006) D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+ −T cells. J Neuroimmunol 173:180–187. doi:10.1016/j.jneuroim.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  • van den Boorn JG, Hartmann G (2013) Turning tumors into vaccines: co-opting the innate immune system. Immunity 39:27–37. doi:10.1016/j.immuni.2013.07.011

    Article  PubMed  CAS  Google Scholar 

  • Borasio GD, Linke R, Schwarz J, Schlamp V, Abel A, Mozley PD, Tatsch K (1998) Dopaminergic deficit in amyotrophic lateral sclerosis assessed with [I-123] IPT single photon emission computed tomography. J Neurol Neurosurg Psychiatry 65:263–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrow P, Bhardwaj N (2008) Innate immune responses in primary HIV-1 infection. Curr Opin HIV AIDS 3:36–44. doi:10.1097/COH.0b013e3282f2bce7

    Article  PubMed  PubMed Central  Google Scholar 

  • Boutajangout A, Wisniewski T (2013) The innate immune system in Alzheimer’s disease. Int J Cell Biol. doi:10.1155/2013/576383

  • Brown DR, Price LD (2008) Catecholamines and sympathomimetic drugs decrease early salmonella typhimurium uptake into porcine Peyer's patches. FEMS Immunol Med Microbiol 52:29–35. doi:10.1111/j.1574-695X.2007.00348.x

    Article  CAS  PubMed  Google Scholar 

  • Brown SW, Meyers RT, Brennan KM, Rumble JM, Narasimhachari N, Perozzi EF, Ryan JJ, Stewart JK, Fischer-Stenger K (2003) Catecholamines in a macrophage cell line. J Neuroimmunol 135:47–55

    Article  CAS  PubMed  Google Scholar 

  • Cadman ET, Thysse KA, Bearder S, Cheung AY, Johnston AC, Lee JJ, Lawrence RA (2014) Eosinophils are important for protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae PLoS Pathog doi:10.1371/journal.ppat.1003988

  • Cao X, Aballay A (2016) Neural inhibition of dopaminergic signaling enhances immunity in a cell-non-autonomous. Manner Curr Biol 26:2329–2334. doi:10.1016/j.cub.2016.06.036

    Article  CAS  PubMed  Google Scholar 

  • Capellino S, Cosentino M, Wolff C, Schmidt M, Grifka J, Straub RH (2010) Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 69:1853–1860. doi:10.1136/ard.2009.119701

    Article  CAS  PubMed  Google Scholar 

  • Capellino S, Cosentino M, Luini A, Bombelli R, Lowin T, Cutolo M, Marino F, Straub RH (2014) Increased expression of dopamine receptors in synovial fibroblasts from patients with rheumatoid arthritis. Arthritis Rheumatol 66:2685–2693. doi:10.1002/art.38746

    Article  CAS  PubMed  Google Scholar 

  • Capper-Loup C, Canales JJ, Kadaba N, Graybiel AM (2002) Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J Neurosci 22:6218–6227

    CAS  PubMed  Google Scholar 

  • Carbone L, D'Agati V, Cheng JT, Appel GB (1989) Course and prognosis of human immunodeficiency virus-associated nephropathy. Am J Med 87:389–395

    Article  CAS  PubMed  Google Scholar 

  • Carrington M, Alter G (2012) Innate immune control of HIV. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a007070

  • Carvalho-Freitas MI, Anselmo-Franci JA, Teodorov E, Nasello AG, Palermo-Neto J, Felicio LF (2007) Reproductive experience modifies dopaminergic function, serum levels of prolactin, and macrophage activity in female rats. Life Sci 81:128–136. doi:10.1016/j.lfs.2007.04.032

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Freitas MI, Rodrigues-Costa EC, Nasello AG, Palermo-Neto J, Felicio LF (2008) In vitro macrophage activity: biphasic effect of prolactin and indirect evidence of dopaminergic modulation. Neuroimmunomodulation 15:131–139. doi:10.1159/000148196

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Freitas MI, Anselmo-Franci JA, Maiorka PC, Palermo-Neto J, Felicio LF (2011) Prolactin differentially modulates the macrophage activity of lactating rats: possible role of reproductive experience. J Reprod Immunol 89:38–45. doi:10.1016/j.jri.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  • Casadó-Anguera V, Bonaventura J, Moreno E, Navarro G, Cortés A, Ferré S, Casadó V (2016) Evidence for the heterotetrameric structure of the adenosine A2A-dopamine D2 receptor complex. Biochem Soc Trans 44:595–600. doi:10.1042/BST20150276

    Article  PubMed  CAS  Google Scholar 

  • Cassani E, Cilia R, Laguna J, Barichella M, Contin M, Cereda E, Isaias IU, Sparvoli F, Akpalu A, Budu KO, Scarpa MT, Pezzoli G (2016) Mucuna pruriens For Parkinson's disease: low-cost preparation method, laboratory measures and pharmacokinetics profile. J Neurol Sci 365:175–180. doi:10.1016/j.Jns.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  • Chang JY, Liu LZ (2000) Catecholamines inhibit microglial nitric oxide production. Brain Res Bull 52:525–530

    Article  CAS  PubMed  Google Scholar 

  • Chanvillard C, Jacolik RF, Infante-Duarte C, Nayak RC (2013) The role of natural killer cells in multiple sclerosis and their therapeutic implications. Front Immunol. doi:10.3389/fimmu.2013.00063

  • Chávez-Sánchez L, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV, Montoya-Díaz E, Blanco-Favela F (2014) Innate immune system cells in atherosclerosis. Arch Med Res 45:1–14. doi:10.1016/j.arcmed.2013.11.007

    Article  PubMed  CAS  Google Scholar 

  • Chen ML, Tsai TC, Wang LK, Lin YY, Tsai YM, Lee MC, Tsai FM (2012) Risperidone modulates the cytokine and chemokine release of dendritic cells and induces TNF-α-directed cell apoptosis in neutrophils. Int Immunopharmacol 12:197–204. doi:10.1016/j.intimp.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  • Chen ML, Wu S, Tsai TC, Wang LK, Tsai FM (2014) Regulation of neutrophil phagocytosis of Escherichia coli by antipsychotic drugs. Int Immunopharmacol 23:550–557. doi:10.1016/j.intimp.2014.09.030

    Article  CAS  PubMed  Google Scholar 

  • Chi DS, Qui M, Krishnaswamy G, Li C, Stone W (2003) Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide 8:127–132

    Article  CAS  PubMed  Google Scholar 

  • Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a020370

  • Ciaramella A, Salani F, Bizzoni F, Orfei MD, Caltagirone C, Spalletta G, Bossù P (2016) Myeloid dendritic cells are decreased in peripheral blood of Alzheimer's disease patients in association with disease progression and severity of depressive symptoms. J Neuroinflammation 13:18. doi:10.1186/s12974-016-0483-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321. doi:10.1038/nrn3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coley JS, Calderon TM, Gaskill PJ, Eugenin EA, Berman JW (2015) Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis. PLoS One. doi:10.1371/journal.pone.0117450

  • Cordano C, Pardini M, Cellerino M, Schenone A, Marino F, Cosentino M (2015) Levodopa-induced neutropenia. Parkinsonism Relat Disord 21:423–425. doi:10.1016/j.parkreldis.2015.02.002

    Article  PubMed  Google Scholar 

  • Cosentino M, Marino F (2013) Adrenergic and dopaminergic modulation of immunity in multiple sclerosis: teaching old drugs new tricks? J NeuroImmune Pharmacol 8:163–179. doi:10.1007/s11481-012-9410-z

    Article  PubMed  Google Scholar 

  • Cosentino M, Marino F (2016) The second Insubria Autumn School on Neuroimmune pharmacology: repurposing established drugs for novel indications. J NeuroImmune Pharmacol 11:214–226. doi:10.1007/s11481-015-9649-2

    Article  PubMed  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Frigo G (2002) Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calcium. J Neuroimmunol 125:125–133

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (2003) Unravelling dopamine (and catecholamine) physiopharmacology in lymphocytes: open questions. Trends Immunol 24:581–582

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol 162:112–121. doi:10.1016/j.jneuroim.2005.01.019

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642. doi:10.1182/blood-2006-01-028423

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Colombo C, Mauri M, Ferrari M, Corbetta S, Marino F, Bono G, Lecchini S (2009) Expression of apoptosis-related proteins and of mRNA for dopaminergic receptors in peripheral blood mononuclear cells from patients with Alzheimer disease. Alzheimer Dis Assoc Disord 23:88–90

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Zaffaroni M, Trojano M, Giorelli M, Pica C, Rasini E, Bombelli R, Ferrari M, Ghezzi A, Comi G, Livrea P, Lecchini S, Marino F (2012) Dopaminergic modulation of CD4+CD25(high) regulatory T lymphocytes in multiple sclerosis patients during interferon-β therapy. Neuroimmunomodulation 19:283–292. doi:10.1159/000336981

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Zaffaroni M, Marino F (2014) Levels of mRNA for dopaminergic receptor D5 in circulating lymphocytes may be associated with subsequent response to interferon-β in patients with multiple sclerosis. J Neuroimmunol 277:193–196. doi:10.1016/j.jneuroim.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Kustrimovic N, Marino F (2017) Autoimmunity in neurologic disease. In: Ikezu T, Gendelman H (eds) Neuroimmune pharmacology, 2nd edition, Spring, in press

  • Courties G, Moskowitz MA, Nahrendorf M (2014) The innate immune system after ischemic injury: lessons to be learned from the heart and brain. JAMA Neurol 71:233–236. doi:10.1001/jamaneurol.2013.5026

    Article  PubMed  PubMed Central  Google Scholar 

  • De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL, Investigators SOAPII (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789. doi:10.1056/NEJMoa0907118

    Article  CAS  PubMed  Google Scholar 

  • De Backer D, Aldecoa C, Njimi H, Vincent JL (2012) Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med 40:725–730. doi:10.1097/CCM.0b013e31823778ee

    Article  CAS  PubMed  Google Scholar 

  • De Kleer I, Willems F, Lambrecht B, Goriely S (2014) Ontogeny of myeloid cells. Front Immunol. doi:10.3389/fimmu.2014.00423

  • Degn SE, Thiel S (2013) Humoral pattern recognition and the complement system. Scand J Immunol 78:181–193. doi:10.1111/sji.12070

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669. doi:10.4049/jimmunol.0900274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy SS, Perera CJ, Makker PG, Lees JG, Carrive P, Moalem-Taylor G (2016) Peripheral and central neuroinflammatory changes and pain behaviors in an animal model of multiple sclerosis. Front Immunol. doi:10.3389/fimmu.2016.00369

  • Eichler I, Eichler HG, Rotter M, Kyrle PA, Gasic S, Korn A (1989) Plasma concentrations of free and sulfoconjugated dopamine, epinephrine, and norepinephrine in healthy infants and children. Klin Wochenschr 67:672–675

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G, Aneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey E (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871. doi:10.1210/jcem.82.11.4339

    Article  CAS  PubMed  Google Scholar 

  • Eisenhofer G, Goldstein DS, Sullivan P, Csako G, Brouwers FM, Lai EW, Adams KT, Pacak K (2005) Biochemical and clinical manifestations of dopamine-producing paragangliomas: utility of plasma Methoxytyramine. J Clin Endocrinol Metab 90:2068–2075. doi:10.1210/jc.2004-2025

    Article  CAS  PubMed  Google Scholar 

  • Erjefält JS (2014) Mast cells in human airways: the culprit? Eur Respir Rev 23:299–307. doi:10.1183/09059180.00005014

    Article  PubMed  Google Scholar 

  • Fahmy Wahba MG, Shehata Messiha BA, Abo-Saif AA (2015) Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol 765:307–315. doi:10.1016/j.ejphar.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  • Falgarone G, Jaen O, Boissier MC (2005) Role for innate immunity in rheumatoid arthritis. Joint Bone Spine 72:17–25. doi:10.1016/j.jbspin.2004.05.013

    Article  PubMed  Google Scholar 

  • Färber K, Pannasch U, Kettenmann H (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29:128–138. doi:10.1016/j.mcn.2005.01.003

    Article  PubMed  CAS  Google Scholar 

  • Farrar CA, Kupiec-Weglinski JW, Sacks SH (2013) The innate immune system and transplantation. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a015479

  • Feldman JM, Lee EM, Castleberry CA (1987) Catecholamine and serotonin content of foods: effect on urinary excretion of homovanillic and 5-hydroxyindoleacetic acid. J Am Diet Assoc 87:1031–1035

    CAS  PubMed  Google Scholar 

  • Feldman RS, Meyer JS, Quenzer LF (1997) Catecholamines. In: Principles of neuropsychopharmacology. Sinauer Associates Inc,Sunderland, Massachusets, USA, pp 277–344

  • Ferrè S, Lluı’s C, Lanciego JL, Franco R (2010) Prime time for G-protein-coupledvreceptor heteromers as therapeutic targets for CNS disorders: the dopamine D(1)-D(3) receptor heteromer. CNS Neurol Disord Drug Targets 9:596–600

    Article  PubMed  Google Scholar 

  • Ferrè S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V, Volkow ND (2016) Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology 104:154–160. doi:10.1016/j.neuropharm.2015.05.028

    Article  PubMed  CAS  Google Scholar 

  • Flegr J (2007) Effects of Toxoplasma on human behavior. Schizophr Bull 33:757–760. doi:10.1093/schbul/sbl074

    Article  PubMed  PubMed Central  Google Scholar 

  • Flegr J (2013) Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol 216:127–133. doi:10.1242/jeb.073635

    Article  PubMed  Google Scholar 

  • Flierl MA, Rittirsch D, Chen AJ, Nadeau BA, Day DE, Sarma JV, Huber-Lang MS, Ward PA (2008) The complement anaphylatoxin C5a induces apoptosis in adrenomedullary cells during experimental sepsis. PLoS One. doi:10.1371/journal.pone.0002560

  • Frederick AL, Yano H, Trifilieff P, Vishwasrao HD, Biezonski D, Mészáros J, Urizar E, Sibley DR, Kellendonk C, Sonntag KC, Graham DL, Colbran RJ, Stanwood GD, Javitch JA (2015) Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry 20:1373–1385. doi:10.1038/mp.2014.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26:209–220. doi:10.1002/mds.21440

    Article  CAS  PubMed  Google Scholar 

  • Gaiazzi M, Rasini E, Marino F, Zaffaroni M, Cosentino M (2016a) Dopaminergic receptors on human monocytes and peripheral blood dendritic cells. J NeuroImmune Pharmacol 11:214–226. doi:10.1007/s11481-015-9649-2

    Article  Google Scholar 

  • Gaiazzi M, Rasini E, Marino F, Zaffaroni M, Cosentino M (2016b) Expression of dopaminergic receptors on human monocytes and peripheral blood dendritic cells. J NeuroImmune Pharmacol 11(Suppl 1):S1–S2. doi:10.1007/s11481-016-9661-1

    Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720. doi:10.1038/nri1180

    Article  CAS  PubMed  Google Scholar 

  • Gaskill PJ, Calderon TM, Luers AJ, Eugenin EA, Javitch JA, Berman JW (2009) Human immunodeficiency virus (HIV) infection of human macrophages is increased by dopamine: a bridge between HIV-associated neurologic disorders and drug abuse. Am J Pathol 175:1148–1159. doi:10.2353/ajpath.2009.081067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskill PJ, Carvallo L, Eugenin EA, Berman JW (2012) Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. J Neuroinflammation. doi:10.1186/1742-2094-9-203

  • Gaskill PJ, Calderon TM, Coley JS, Berman JW (2013) Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J NeuroImmune Pharmacol 8:621–642. doi:10.1007/s11481-013-9443-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW (2014) Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One. doi:10.1371/journal.pone.0108232

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    Article  CAS  PubMed  Google Scholar 

  • Gendelman HE, Mosley RL (2015) A perspective on roles played by innate and adaptive immunity in the pathobiology of neurodegenerative disorders. J NeuroImmune Pharmacol 10:645–650. doi:10.1007/s11481-015-9639-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Gierut A, Perlman H, Pope RM (2010) Innate immunity and rheumatoid arthritis. Rheum Dis Clin N Am 36:271–296. doi:10.1016/j.rdc.2010.03.004

    Article  Google Scholar 

  • Gomez F, Ruiz P, Briceño F, Rivera C, Lopez R (1999) Macrophage Fcgamma receptors expression is altered by treatment with dopaminergic drugs. Clin Immunol 90:375–387. doi:10.1006/clim.1998.4665

    Article  CAS  PubMed  Google Scholar 

  • González H, Contreras F, Prado C, Elgueta D, Franz D, Bernales S, Pacheco R (2013) Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. J Immunol 190:5048–5056. doi:10.4049/jimmunol.1203121

    Article  PubMed  CAS  Google Scholar 

  • Green BT, Brown DR (2016) Interactions between bacteria and the gut mucosa: do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection? Adv Exp Med Biol 874:121–141. doi:10.1007/978-3-319-20215-0_5

    CAS  PubMed  Google Scholar 

  • Guillot-Sestier MV, Town T (2013) Innate immunity in Alzheimer's disease: a complex affair. CNS Neurol Disord Drug Targets 12:593–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot-Sestier MV1, Doty KR1, Town T (2015) Innate immunity fights Alzheimer's disease. Trends Neurosci 38:674–681. doi:10.1016/j.tins.2015.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasbi A, O'Dowd BF, George SR (2011) Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain. doi:10.1186/1756-6606-4-26

  • Haskó G, Szabó C, Merkel K, Bencsics A, Zingarelli B, Kvetan V, Vizi ES (1996) Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by dopamine receptor agonists and antagonists in mice. Immunol Lett 49:143–147

    Article  PubMed  Google Scholar 

  • Haskó G, Szabó C, Németh ZH, Deitch EA (2002) Dopamine suppresses IL-12 p40 production by lipopolysaccharide-stimulated macrophages via a beta-adrenoceptor-mediated mechanism. J Neuroimmunol 122:34–39

    Article  PubMed  Google Scholar 

  • Heidari B (2011) Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian J Intern Med 2:161–170

    PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer's disease. Nat Immunol 16:229–236. doi:10.1038/ni.3102

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, Pineda B, Sotelo J (2013) Initial Immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol. doi:10.1155/2013/413465

  • Hertwig L, Pache F, Romero-Suarez S, Stürner KH, Borisow N, Behrens J, Bellmann-Strobl J, Seeger B, Asselborn N, Ruprecht K, Millward JM, Infante-Duarte C, Paul F (2016) Distinct functionality of neutrophils in multiple sclerosis and neuromyelitis optica. Mult Scler 22:160–173. doi:10.1177/1352458515586084

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg SM (2007) Vasopressor support in septic shock. Chest 132:1678–1687. doi:10.1378/chest.07-0291

    Article  CAS  PubMed  Google Scholar 

  • Huck JH, Freyer D, Böttcher C, Mladinov M, Muselmann-Genschow C, Thielke M, Gladow N, Bloomquist D, Mergenthaler P, Priller J (2015) De novo expression of dopamine D2 receptors on microglia after stroke. J Cereb Blood Flow Metab 35:1804–1811. doi:10.1038/jcbfm.2015.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35(11):1503–1519

    Article  CAS  PubMed  Google Scholar 

  • Jadidi-Niaragh F, Shegarfi H, Naddafi F, Mirshafiey A (2012) The role of natural killer cells in Alzheimer's disease. Scand J Immunol 76:451–456. doi:10.1111/j.1365-3083.2012.02769.x

    Article  CAS  PubMed  Google Scholar 

  • Jones KA, Thomsen C (2013) The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 53:52–62. doi:10.1016/j.mcn.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Jose PA, Eisner GM, Felder RA (2003) Regulation of blood pressure by dopamine receptors. Nephron Physiol 95:19–27

    Article  CAS  Google Scholar 

  • Kaplan MJ (2013) Role of neutrophils in systemic autoimmune diseases. Arthritis Res Ther. doi:10.1186/ar4325

  • Karasuyama H, Yamanishi Y (2014) Basophils have emerged as a key player in immunity. Curr Opin Immunol 31:1–7. doi:10.1016/j.coi.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  • Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T1 (2011) Nonredundant roles of basophils in immunity. Annu Rev Immunol 29:45–69. doi:10.1146/annurev-immunol-031210-101257

    Article  CAS  PubMed  Google Scholar 

  • Katritch V, Reynolds KA, Cherezov V, Hanson MA, Roth CB, Yeager M, Abagyan R (2009) Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J Mol Recognit 22(4):307–318. doi:10.1002/jmr.949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384. doi:10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650. doi:10.1016/j.immuni.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. doi:10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  • Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci U S A 98:1964–1969. doi:10.1073/pnas.98.4.1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, Seok H, Choi H, Lee DG, Kim JI, Kim H (2014) Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem Biophys Res Commun 448:292–297. doi:10.1016/j.bbrc.2014.04.105

    Article  CAS  PubMed  Google Scholar 

  • Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7:338–353. doi:10.1016/j.nurt.2010.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokkinou I, Fragoulis EG, Vassilacopoulou D (2009) The U937 macrophage cell line expresses enzymatically active L-Dopa decarboxylase. J Neuroimmunol 216:51–58. doi:10.1016/j.jneuroim.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. doi:10.1038/nri3399

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y (2015) Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci. doi:10.3389/fncel.2015.00261

  • Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D (2015) Neutrophils: between host Defence, immune modulation, and tissue injury. PLoS Pathog. doi:10.1371/journal.ppat.1004651

  • Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440

    Article  CAS  Google Scholar 

  • Kumar V, Sharma A (2010) Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 10:1325–1334. doi:10.1016/j.intimp.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  • Kushwah R, Hu J (2011) Complexity of dendritic cell subsets and their function in the host immune system. Immunology 133:409–419. doi:10.1111/j.1365-2567.2011.03457.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kustrimovic N, Rasini E, Legnaro M, Marino F, Cosentino M (2014) Expression of dopaminergic receptors on human CD4+ T lymphocytes: flow cytometric analysis of naive and memory subsets and relevance for the neuroimmunology of neurodegenerative disease. J NeuroImmune Pharmacol 9:302–312. doi:10.1007/s11481-014-9541-5

    Article  PubMed  Google Scholar 

  • Kustrimovic N, Rasini E, Legnaro M, Bombelli R, Aleksic I, Blandini F, Comi C, Mauri M, Minafra B, Riboldazzi G, Sanchez-Guajardo V, Marino F, Cosentino M (2016) Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson's disease. Sci Rep. doi:10.1038/srep33738

  • Lee MS (2014) Role of innate immunity in the pathogenesis of type 1 and type 2 diabetes. J Korean Med Sci 29:1038–1041. doi:10.3346/jkms.2014.29.8.1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite F, Lima M, Marino F, Cosentino M, Ribeiro L. (2016) Dopaminergic receptors and tyrosine hydroxylase expression in peripheral blood mononuclear cells: a distinct pattern in central obesity. PLoS one 25;11(1):e0147483.

  • Levine AP, Segal AW (2013) What is wrong with granulocytesin inflammatory bowel diseases? Dig Dis 31:321–327. doi:10.1159/000354686

    Article  PubMed  PubMed Central  Google Scholar 

  • Levite M (2012) Nerve-driven immunity neurotransmitters and neuropeptides in the immune system. In: Nerve-Driven Immunology Springer (ed). Vienna, Austria and New York, USA, pp 1–45

  • Levite M (2015) Dopamine and T cells: receptors, direct and potent effects, endogenous production and abnormalities in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 216:42–89. doi:10.1111/apha.12476

    Article  CAS  Google Scholar 

  • Li H, Cuzner ML, Newcombe J (1996) Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol 22:207–215

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tan MS, Jiang T, Tan L (2014) Microglia in Alzheimer's disease. Biomed Res Int. doi:10.1155/2014/437483

  • Liang H, Wang X, Chen H, Song L, Ye L, Wang SH, Wang YJ, Zhou L, Ho WZ (2008) Methamphetamine enhances HIV infection of macrophages. Am J Pathol 172:1617–1624. doi:10.2353/ajpath.2008.070971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaskou E, Wilson DV, Oo YH (2012) Innate immune cells in liver inflammation. Mediat Inflamm. doi:10.1155/2012/949157

  • Lin MH, Apolloni A, Cutillas V, Sivakumaran H, Martin S, Li D, Wei T, Wang R, Jin H, Spann K, Harrich D (2015) A mutant tat protein inhibits HIV-1 reverse transcription by targeting the reverse transcription complex. J Virol 89:4827–4836. doi:10.1128/JVI.03440-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindgren N, Usiello A, Goiny M, Haycock J, Erbs E, Greengard P, Hokfelt T, Borrelli E, Fisone G (2003) Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci U S A 100:4305–4309. doi:10.1073/pnas.0730708100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang F, Huang C, Long LH, Wu WN, Cai F, Wang JH, Ma LQ, Chen JG (2009) Activation of phosphatidylinositol-linked novel D1 dopamine receptor contributes to the calcium mobilization in cultured rat prefrontal cortical astrocytes. Cell Mol Neurobiol 29:317–328. doi:10.1007/s10571-008-9323-9

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Shi Z, Liu J, Wang Y (2014) HIV transactivator of transcription enhances methamphetamine-induced Parkinson’s-like behavior in the rats. Neuroreport 25:860–864. doi:10.1097/WNR.0000000000000199

    Article  PubMed Central  Google Scholar 

  • Lopez OL, Wisnieski SR, Becker JT, Boller F, DeKosky ST (1997) Extrapyramidal signs in patients with probable Alzheimer disease. Arch Neurol 54:969–975

    Article  CAS  PubMed  Google Scholar 

  • Łukasiewicz S, Błasiak E, Szafran-Pilch K, Dziedzicka-Wasylewska M (2016) Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics - in vitro studies. J Neurochem 137:549–560. doi:10.1111/jnc.13582

    Article  PubMed  CAS  Google Scholar 

  • Lumeng CN (2013) Innate immune activation in obesity. Mol Aspects Med 34:12–29. doi:10.1016/j.mam.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Lutzky V, Hannawi S, Thomas R (2007) Cells of the synovium in rheumatoid arthritis. Dendritic cells. Arthritis Res Ther 9:219. doi:10.1186/ar2200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maggio R, Millan MJ (2010) Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance. Curr Opin Pharmacol 10:100–107. doi:10.1016/j.coph.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  • Malaspina A, Puentes F, Amor S (2015) Int Immunol 27:117–129. doi:10.1093/intimm/dxu099

    Article  CAS  PubMed  Google Scholar 

  • Manches O, Frleta D, Bhardwaj N (2014) Dendritic cells in progression and pathology of HIV infection. Trends Immunol 35:114–122. doi:10.1016/j.it.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531. doi:10.1038/nri3024

    Article  CAS  PubMed  Google Scholar 

  • Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH (2014) Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122:91–128. doi:10.1016/B978-0-12-800267-4.00003-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71. doi:10.1007/s00726-011-1186-6

    Article  CAS  PubMed  Google Scholar 

  • Marino F, Cosentino M (2016) Multiple sclerosis: repurposing dopaminergic drugs for MS--the evidence mounts. Nat Rev Neurol 12:191–192. doi:10.1038/nrneurol.2016.33

    Article  CAS  PubMed  Google Scholar 

  • Martin G, Forte P, Luchsinger A, Mendoza F, Urbina-Quintana A, Hernandez Pieretti O, Romero E, Velasco M (1993) Effect of intravenous dopamine on blood pressure and plasma insulin in hypertensive patients. Eur J Clin Pharmacol 45:503–505

    Article  CAS  PubMed  Google Scholar 

  • Martin HL, Alsaady I, Howell G, Prandovszky E, Peers C, Robinson P, McConkey GA (2015) Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells. Neuroscience 306:50–62. doi:10.1016/j.neuroscience.2015.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martorana A, Koch G (2014) Is dopamine involved in Alzheimer's disease? Front Aging Neurosci 6:252. doi:10.3389/fnagi.2014.00252

    PubMed  PubMed Central  Google Scholar 

  • Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, Bellinger DL, Rogers J (2009) Microglial responses to dopamine in a cell culture model of Parkinson's disease. Neurobiol Aging 30:1805–1817. doi:10.1016/j.neurobiolaging.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Ohta N, Goto Y, Kashiwa Y, Yamamoto S, Fujino Y (2015) Haloperidol suppresses murine dendritic cell maturation and priming of the T helper 1–type immune response. Anesth Analg 120:895–902. doi:10.1213/ANE.0000000000000606

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka T (1990) A sedative effect of dopamine on the respiratory burst in neonatal polymorphonuclear leukocytes. Pediatr Res 28:24–27. doi:10.1203/00006450-199007000-00006

    Article  CAS  PubMed  Google Scholar 

  • Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248:170–187. doi:10.1111/j.1600-065X.2012.01135.x

    Article  PubMed  PubMed Central  Google Scholar 

  • McConkey GA, Martin HL, Bristow GC, Webster JP (2013) Toxoplasma gondii infection and behaviour – location, location, location? J Exp Biol 216:113–119. doi:10.1242/jeb.074153

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald RH, Goldberg LI, McNay JL, Tuttle NP (1964) Effect of dopamine in man: augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J Clin Invest 43:1116–1124. doi:10.1172/JCI104996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219. doi:10.1056/NEJMra1004965

    Article  CAS  PubMed  Google Scholar 

  • McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132:34–40

    Article  CAS  PubMed  Google Scholar 

  • Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650. doi:10.1038/374647a0

    Article  CAS  PubMed  Google Scholar 

  • Meli R, Mattace Raso G, Calignano A (2014) Role of innate immune response in non-alcoholic fatty liver disease: metabolic complications and therapeutic tools. Front Immunol. doi:10.3389/fimmu.2014.00177

  • Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  CAS  PubMed  Google Scholar 

  • Mendell JR, Chase TN, Engel WK (1971) Amyotrophic lateral sclerosis: metabolism of central monoamines and treatment with L-dopa. Trans Am Neurol Assoc 96:284–286

    CAS  PubMed  Google Scholar 

  • Midde NM, Yuan Y, Quizon PM, Sun WL, Huang X, Zhan CG, Zhu J (2015) Mutations at tyrosine 88, lysine 92 and tyrosine 470 of human dopamine transporter result in an attenuation of HIV-1 tat-induced inhibition of dopamine transport. J NeuroImmune Pharmacol 10:122–135. doi:10.1007/s11481-015-9583-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Mobini M, Kashi Z, Mohammad Pour AR, Adibi E (2011) The effect of Cabergoline on clinical and laboratory findings in active rheumatoid arthritis. Iran Red Crescent Med J 13:749–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moisse K, Strong MJ (2006) Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907. doi:10.1101/gad.188326.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraga-Amaro R, Jerez-Baraona JM, Simon F, Stehberg J (2014) Role of astrocytes in memory and psychiatric disorders. J Physiol Paris 108:240–251. doi:10.1016/j.jphysparis.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Pietra G, Montaldo E, Vacca P, Pende D, Falco M, Del Zotto G, Locatelli F, Moretta A, Mingari MC (2014) Human NK cells: from surface receptors to the therapy of leukemias and solid tumors. Front Immunol. doi:10.3389/fimmu.2014.00087

  • Mori T, Kabashima K, Fukamachi S, Kuroda E, Sakabe J, Kobayashi M, Nakajima S, Nakano K, Tanaka Y, Matsushita S, Nakamura M, Tokura Y (2013) D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. J Dermatol Sci 71:37–44. doi:10.1016/j.jdermsci.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Noda K, Kohno K, Samejima M (1988) Bioavailability and pharmacokinetics of oral dopamine in dogs. J Pharm Sci 77:565–568

    Article  CAS  PubMed  Google Scholar 

  • Murdock BJ, Bender DE, Kashlan SR, Figueroa-Romero C, Backus C, Callaghan BC, Goutman SA, Feldman EL (2016) Increased ratio of circulating neutrophils to monocytes in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e242. doi:10.1212/NXI.0000000000000242

    Article  PubMed  PubMed Central  Google Scholar 

  • Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M (2012) Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 242:60–71. doi:10.1016/j.jneuroim.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  • Nagata E, Ogino M, Iwamoto K, Kitagawa Y, Iwasaki Y, Yoshii F, Ikeda JE; ALS Consortium Investigators (2016) PLoS One 24;11:e0149509. doi: 10.1371/journal.pone.0149509

  • Nakagome K, Imamura M, Okada H, Kawahata K, Inoue T, Hashimoto K, Harada H, Higashi T, Takagi R, Nakano K, Hagiwara K, Kanazawa M, Dohi M, Nagata M, Matsushita S (2011) Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 186:5975–5982

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373:286–291. doi:10.1016/j.bbrc.2008.06.012

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S (2009) Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 21:645–654. doi:10.1093/intimm/dxp033

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186:3745–3752. doi:10.4049/jimmunol.1002475

    Article  CAS  PubMed  Google Scholar 

  • Nakashioya H, Nakano K, Watanabe N, Miyasaka N, Matsushita S, Kohsaka H (2011) Therapeutic effect of D1-like dopamine receptor antagonist on collagen-induced arthritis of mice. Mod Rheumatol 21:260–266. doi:10.1007/s10165-010-0387-2

    Article  CAS  PubMed  Google Scholar 

  • Nam ST, Kim DH, Lee MB, Nam HJ, Kang JK, Park MJ, Lee IH, Seok H, Lee DG, Hwang JS, Kim H (2013) Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis. Biochem Biophys Res Commun 437:35–40. doi:10.1016/j.bbrc.2013.06.031

    Article  CAS  PubMed  Google Scholar 

  • Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR, Marino R, Federici M, De Bartolo P, Aversa D, Dell'Acqua MC, Cordella A, Sancandi M, Keller F, Petrosini L, Puglisi-Allegra S, Mercuri NB, Coccurello R, Berretta N, D'Amelio M (2017) Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 8:14727. doi:10.1038/ncomms14727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noris M, Remuzzi G (2013) Overview of complement activation and regulation. Semin Nephrol 33:479–492. doi:10.1016/j.semnephrol.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nottet HSLM, Gendelman HE (1995) Unravelling the neuroimmune mechanisms for the HIV-1-associated cognitive/motor complex. Immunol Today 16:441–448

    Article  CAS  PubMed  Google Scholar 

  • Olsson Y (1974) Mast cells in plaques of multiple sclerosis. Acta Neurol Scand 50:611–618

    Article  CAS  PubMed  Google Scholar 

  • O'Reilly S (2014) Innate immunity in systemic sclerosis pathogenesis. Clin Sci (Lond) 126:329–337. doi:10.1042/CS20130367

    Article  CAS  Google Scholar 

  • Pacheco R, Contreras F, Zouali M (2014) The dopaminergic system in autoimmune diseases. Front Immunol. doi:10.3389/fimmu.2014.00117

  • Pacheco R, Prado CE, Barrientos Mj, Benales S (2009) Role of dopamine in the physiology of T cells and dendritic cells. J Neuroimmunol 216:8–19

  • Pannell M, Szulzewsky F, Matyash V, Wolf SA, Kettenmann H (2014) The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-γ, and IL-4. Glia 62:667–679. doi:10.1002/glia.22633

    Article  PubMed  Google Scholar 

  • Parihar A, Eubank TD, Doseff AI (2010) Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun 2:204–215. doi:10.1159/000296507

    Article  PubMed  PubMed Central  Google Scholar 

  • Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345. doi:10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  • Pereira A, McLaren A, Bell WR, Copolov D, Dean B (2003) Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow. Pharmacogenomics J 3:227–234. doi:10.1038/sj.tpj.6500179

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sepulveda A, Torres MJ, Khoury M, Illanes SE (2014) Innate immune system and preeclampsia. Front Immunol. doi:10.3389/fimmu.2014.00244

  • Perreault ML, Hasbi A, O'Dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39:156–168. doi:10.1038/npp.2013.148

    Article  CAS  PubMed  Google Scholar 

  • Phani S, Re DB, Przedborski S (2012) The role of the innate immune system in ALS. Front Pharmacol. doi:10.3389/fphar.2012.00150

  • Pinoli M, Schembri L, Scanzano A, Legnaro M, Rasini E, Luini A, de Eguileor M, Pulze L, Marino F, Cosentino M (2016a) Production of proinflammatory mediators by human neutrophils during long-term culture. Int J Clin Exp Pathol 9:1858–1866

    Google Scholar 

  • Pinoli M, Rasini E, Legnaro M, De Eguileor M, Pulze L, Cosentino M, Marino F (2016b) Dopamine affects migration and morphology of human neutrophils through D1-like dopaminergic receptors. J NeuroImmune Pharmacol 11:S1–S2. doi:10.1007/s11481-016-9661-1

    Google Scholar 

  • Pizzolato G, Chierichetti F, Fabbri M, Cagnin A, Dam M, Ferlin G, Battistin L (1996) Reduced striatal dopamine receptors in Alzheimer's disease: single photon emission tomography study with the D2 tracer [123I]-IBZM. Neurology 47:1065–1068

    Article  CAS  PubMed  Google Scholar 

  • Podolec Z, Vetulani J, Bednarczyk B, Szczeklik A (1979) Central dopamine receptors regulate blood eosinophilia in the rat. Allergy 34:103–110

    Article  CAS  PubMed  Google Scholar 

  • Prado C, Contreras F, Gonzalez H, Diaz P, Elgueta D, Barrientos M, Herrada AA, Lladser A, Bernales S, Pacheco R (2012) Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunol 188:3062–3070. doi:10.4049/jimmunol.1103096

    Article  CAS  PubMed  Google Scholar 

  • Prado C, Bernales S, Pacheco R (2013) Modulation of T-cell mediated immunity by dopamine receptor D5. Endocr Metab Immune Disord Drug Targets 13:184–194

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Flood PM (2008) Microglial cells and Parkinson’s disease. Immunol Res 41:155–164. doi:10.1007/s12026-008-8018-0

    Article  CAS  PubMed  Google Scholar 

  • Raine CS (2016) Multiple sclerosis: the resolving lesion revealed. J Neuroimmunol. doi:10.1016/j.jneuroim.2016.05.021

  • Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246. doi:10.1016/S0074-7742(07)82012-5

    Article  CAS  PubMed  Google Scholar 

  • Rönnberg E, Calounova G, Pejler G (2012) Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner. Biol Chem 393:107–112. doi:10.1515/BC-2011-220

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum JT, Kim HW (2013) Innate immune signals in autoimmune and autoinflammatory uveitis. Int Rev Immunol 32:68–75. doi:10.3109/08830185.2012.750132

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174. doi:10.1146/annurev.immunol.24.021605.090720

    Article  CAS  PubMed  Google Scholar 

  • Rubí B, Maechler P (2010) Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance. Endocrinology 151:5570–5581. doi:10.1210/en.2010-0745

    Article  PubMed  CAS  Google Scholar 

  • Sandifer JP, Jones AE (2012) Dopamine versus norepinephrine for the treatment of septic shock EBEM commentators. Ann Emerg Med 60:372–373. doi:10.1016/j.annemergmed.2012.04.012

    Article  PubMed  Google Scholar 

  • Saresella M, Marventano I, Calabrese E, Piancone F, Rainone V, Gatti A, Alberoni M, Nemni R, Clerici M (2014) A complex proinflammatory role for peripheral monocytes in Alzheimer's disease. J Alzheimers Dis 38:403–413. doi:10.3233/JAD-131160

    CAS  PubMed  Google Scholar 

  • Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528. doi:10.1016/j.bbi.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  • Saurer TB, Carrigan KA, Ijames SG, Lysle DT (2004) Morphine-induced alterations of immune status are blocked by the dopamine D2-like receptor agonist 7-OH-DPAT. J Neuroimmunol 148:54–62. doi:10.1016/j.jneuroim.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  • Saxena M, Yeretssian G (2014) NOD-like receptors: master regulators of inflammation and cancer. Front Immunol. doi:10.3389/fimmu.2014.00327

  • Sayed BA, Christy AL, Walker ME, Brown MA (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184:6891–6900. doi:10.4049/jimmunol.1000126

    Article  CAS  PubMed  Google Scholar 

  • Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol. doi:10.3389/fphar.2015.00171

  • Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206. doi:10.1038/nrn1870

    Article  CAS  PubMed  Google Scholar 

  • Seol IW, Kuo NY, Kim KM (2004) Effects of dopaminergic drugs on mast cell degranulation and nitric oxide generation in RAW 264.7 cells. Arch Pharm Res 27:94–8

  • Shegarfi H, Naddafi F, Mirshafiey A (2012) Natural killer cells and their role in rheumatoid arthritis: friend or foe? ScientificWorldJournal. doi:10.1100/2012/491974

  • Shen MY, Perreault ML, Bambico FR, Jones-Tabah J, Cheung M, Fan T, Nobrega JN, George SR (2015) Rapid anti-depressant and anxiolytic actions following dopamine D1-D2 receptor heteromer inactivation. Eur Neuropsychopharmacol 25:2437–2448. doi:10.1016/j.euroneuro.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  • Shenoy S, Ganesh A, Rishil A, Doshil V, Lankala S, Molnar J, Kogilwaimath S (2011) Dopamine versus norepinephrine in septic shock: a meta-analysis. Crit Care 15:89. doi:10.1186/cc9509)

    Article  Google Scholar 

  • Sibley DR, Monsma FJ Jr, Shen Y (1993) Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 35:391–415

    Article  CAS  PubMed  Google Scholar 

  • Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810. doi:10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So CH, Verma V, Alijaniaram M, Cheng R, Rashid AJ, O’Dowd BF et al (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol 75:843–854. doi:10.1124/mol.108.051805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew M, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. doi:10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  • Sookhai S, Wang JH, McCourt M, O'Connell D, Redmond HP (1999) Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism. Surgery 126:314–322

    Article  CAS  PubMed  Google Scholar 

  • Sookhai S, Wang JH, Winter D, Power C, Kirwan W, Redmond HP (2000) Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome. Shock 14:295–299

    Article  CAS  PubMed  Google Scholar 

  • Steinbach K, Piedavent M, Bauer S, Neumann JT, Friese MA (2013) Neutrophils amplify autoimmune central nervous system infiltrates by maturing local APCs. J Immunol 191:4531–4539. doi:10.4049/jimmunol.1202613

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Snow BJ, Bhatt MH, Peppard R, Eisen A, Calne DB (1993) Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning. Lancet 342:1016–1018

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. doi:10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  • Takkenberg JJ, Czer LS, Fishbein MC, Luthringer DJ, Quartel AW, Mirocha J, Queral CA, Blanche C, Trento A (2004) Eosinophilic myocarditis in patients awaiting heart transplantation. Crit Care Med 32:714–721

    Article  PubMed  Google Scholar 

  • Tanaka S, Ishii A, Ohtaki H, Shioda S, Yoshida T, Numazawa S (2013) Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation. doi:10.1186/1742-2094-10-143

  • Tarazona R, Gonzalez-Garcia A, Zamzami N, Marchetti P, Ruiz-Gajo M, von Rooijen N, Martinez C, Kroemer G (1995) Chlorpromazine amplifies macrophage-dependent IL-10 production in vivo. J Immunol 154:861–870

    CAS  PubMed  Google Scholar 

  • Tayebati SK, Lokhandwala MF, Amenta F (2011) Dopamine and vascular dynamics control: present status and future perspectives. Curr Neurovasc Res 8:246–257

    Article  CAS  PubMed  Google Scholar 

  • Teunis MA, Heijnen CJ, Cools AR, Kavelaars A (2004) Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrino 29:1058–1064. doi:10.1016/j.psyneuen.2003.09.007

    Article  CAS  Google Scholar 

  • Theorell J, Gustavsson AL, Tesi B, Sigmundsson K, Ljunggren HG, Lundbäck T, Bryceson YT (2014) Immunomodulatory activity of commonly used drugs on fc-receptor-mediated human natural killer cell activation. Cancer Immunol Immunother 63:627–641. doi:10.1007/s00262-014-1539-6

    Article  CAS  PubMed  Google Scholar 

  • Tolle LB, Standiford TJ (2013) Danger-associated molecular patterns (DAMPs) in acute lung injury. J Pathol 229:145–156. doi:10.1002/path.4124

    Article  CAS  PubMed  Google Scholar 

  • Torres-Rosas R, Yehia G, Peña G, Mishra P, del Rocio T-BM, Moreno-Eutimio MA, Arriaga-Pizano LA, Isibasi A, Ulloa L (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20:291–295. doi:10.1038/nm.3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabold B, Gruber M, Fröhlich D (2007) Functional and phenotypic changes in polymorphonuclear neutrophils induced by catecholamines. Scand Cardiovasc J 41:59–64. doi:10.1080/14017430601085948

    Article  CAS  PubMed  Google Scholar 

  • Usiello A, Baik JH, Rougé-Pont F, Picetti R, Dierich A, LeMeur M, Piazza PV, Borrelli E (2000) Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408:199–203. doi:10.1038/35041572

    Article  CAS  PubMed  Google Scholar 

  • Vaarmann A, Ghandi S, Abramov AY (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J Biol Chem 285:25018–25023. doi:10.1074/jbc.M110.111450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanItallie TB (2017) Alzheimer's disease: innate immunity gone awry? Metabolism 69S:S41–S49. doi:10.1016/j.metabol.2017.01.014

    Article  PubMed  CAS  Google Scholar 

  • van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 1812:141–150. doi:10.1016/j.bbadis.2010.06.011

  • Vasu TS, Cavallazzi R, Hirani A, Kaplan G, Leiby B, Marik PE (2012) Norepinephrine or dopamine for septic shock: systematic review of randomized clinical trials. J Intensive Care Med 27:172–178. doi:10.1177/0885066610396312

    Article  PubMed  Google Scholar 

  • Ventura AM, Shieh HH, Bousso A, Goes PF, Fernandes IC, de Souza DC et al (2015) Dopamine increases mortality in pediatric septic shock. Crit Care Med 43:2292–2302. doi:10.1016/j.jpeds.2015.10.073

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510. doi:10.1038/ni1582

    Article  CAS  PubMed  Google Scholar 

  • Vogels OJ, Veltman J, Oyen WJ, Horstink MW (2000) Decreased striatal dopamine D2 receptor binding in amyotrophic lateral sclerosis (ALS) and multiple system atrophy (MSA): D2 receptor down-regulation versus striatal cell degeneration. J Neurol Sci 180:62–65

    Article  CAS  PubMed  Google Scholar 

  • Vyas A (2015) Mechanisms of host behavioral change in Toxoplasma gondii rodent association. PLoS Pathog. doi:10.1371/journal.ppat.1004935

  • Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E (2005) Natural-killer cells and dendritic cells : "l'union fait la force". Blood 106:2252–2258. doi:10.1182/blood-2005-03-1154

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener. doi:10.1186/s40035-015-0042-0

  • Waschbisch A, Manzel A, Linker RA, Lee DH (2011) Vascular pathology in multiple sclerosis: mind boosting or myth busting? Exp Transl Stroke Med. doi:10.1186/2040-7378-3-7

  • Watanabe Y, Nakayama T, Nagakubo D, Hieshima K, Jin Z, Katou F, Hashimoto K, Yoshie O (2006) Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J Immunol 176:848–856

    Article  CAS  PubMed  Google Scholar 

  • Webster JP (2007) The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr Bull 33:752–756. doi:10.1093/schbul/sbl073

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenisch C, Parschalk B, Weiss A, Zedwitz-Liebenstein K, Hahsler B, Wenisch H, Georgopoulos A, Graninger W (1996) High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production. Clin Diagn Lab Immunol 3:423–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DW, Eugenin EA, Calderon TM, Berman JW (2012) Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol 91:401–415. doi:10.1189/jlb.0811394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DW, Veenstra M, Gaskill PJ, Morgello S, Calderon TM, Berman JW (2014) Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res 12:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won SJ, Chuang YC, Huang WT, Liu HS, Lin MT (1995) Suppression of natural killer cell activity in mouse spleen lymphocytes by several dopamine receptor antagonists. Experientia 51:343–348

    Article  CAS  PubMed  Google Scholar 

  • Wright HL, Moots RJ, Edwards SW (2014) The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 10:593–601. doi:10.1038/nrrheum.2014.80

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Peter O (2011) Dopamine versus noradrenaline in septic shock. Australas Med J 4:571–574. doi:10.4066/AMJ.2011.761

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazaki M, Matsuoka T, Yasui K, Komiyama A, Akabane T (1989) Dopamine inhibition of superoxide anion production by polymorphonuclear leukocytes. J Allergy Clin Immunol 83:967–972

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73. doi:10.1016/j.cell.2014.11.047

    Article  CAS  PubMed  Google Scholar 

  • Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321. doi:10.1016/j.expneurol.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  • Zalkind S (2001) Ilya Mechnikov: His Life and Work. Honolulu, Hawaii. University Press of the Pacific, pp 78–210

  • Zanassi P, Paolillo M, Montecucco A, Avvedimento EV, Schinelli S (1999) Pharmacological and molecular evidence for dopamine D(1) receptor expression by striatal astrocytes in culture. J Neurosci Res 58:544–552

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48. doi:10.1189/jlb.0403147

    Article  PubMed  CAS  Google Scholar 

  • Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nanì S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G (2015) Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21:880–886. doi:10.1038/nm.3913

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen K (2016) Vasoactive agents for the treatment of sepsis. Ann Transl med. Doi:10.21037/atm.2016.08.58

  • Zhang X, Zhou Z, Wang D, Li A, Yin Y, Gu X, Ding F, Zhen X, Zhou J (2009) Activation of phosphatidylinositol-linked D1-like receptor modulates FGF-2 expression in astrocytes via IP3-dependent Ca2+ signaling. J Neurosci 29:7766–7775. doi:10.1523/JNEUROSCI.0389-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Beers DR, Appel SH (2013a) Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J NeuroImmune Pharmacol 8:888–899. doi:10.1007/s11481-013-9489-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Huang Y, Liu Z, Cao BB, Peng YP, Qiu YH (2013b) Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One. doi:10.1371/journal.pone.0065860

  • Zhu XH, Zellweger R, Ayala A, Chaudry IH (1996) Prolactin inhibits the increased cytokine gene expression in Kupffer cells following haemorrhage. Cytokine 8:134–140. doi:10.1006/cyto.1996.0019

    Article  CAS  PubMed  Google Scholar 

  • Zhu XH, Zellweger R, Wichmann MW, Ayala A, Chaudry IH (1997) Effects of prolactin and metoclopramide on macrophage cytokine gene expression in late sepsis. Cytokine 9:437–446. doi:10.1006/cyto.1996.0186

    Article  CAS  PubMed  Google Scholar 

  • Ziegler-Heitbrock L (2015) Blood monocytes and their subsets: established features and open questions. Front Immunol. doi:10.3389/fimmu.2015.00423

  • Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf WP, Grozdanov V, Thiemann M, Fundel-Clemes K, Freischmidt A, Holzmann K, Strobel B, Weydt P, Witting A, Thal DR, Helferich AM, Hengerer B, Gottschalk KE, Hill O, Kluge M, Ludolph AC, Danzer KM, Weishaupt JH (2016) Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 132:391–411. doi:10.1007/s00401-016-1548-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Monica Pinoli received a PhD fellowship from the University of Insubria to develop a research program on the dopaminergic modulation of neutrophil function, being enrolled in the PhD Course in Clinical and Experimental Medicine and Medical Humanities (XXIX Cycle).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in study conception and design, acquisition, analysis and interpretation of relevant literature. All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved, and declare to have confidence in the integrity of the contributions of their co-authors.

Corresponding author

Correspondence to Franca Marino.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinoli, M., Marino, F. & Cosentino, M. Dopaminergic Regulation of Innate Immunity: a Review. J Neuroimmune Pharmacol 12, 602–623 (2017). https://doi.org/10.1007/s11481-017-9749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-017-9749-2

Keywords

Navigation