Skip to main content

Advertisement

Log in

Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Non-human primate models of human disease have an important role in the translation of a new scientific finding in lower species into an effective treatment. In this study, we tested a new therapeutic antibody against the IL-7 receptor α chain (CD127), which in a C57BL/6 mouse model of experimental autoimmune encephalomyelitis (EAE) ameliorates disease, demonstrating an important pathogenic function of IL-7. We observed that while the treatment was effective in 100 % of the mice, it was only partially effective in the EAE model in common marmosets (Callithrix jacchus), a small-bodied Neotropical primate. EAE was induced in seven female marmoset twins and treatment with the anti-CD127 mAb or PBS as control was started 21 days after immunization followed by weekly intravenous administration. The anti-CD127 mAb caused functional blockade of IL-7 signaling through its receptor as shown by reduced phosphorylation of STAT5 in lymphocytes upon stimulation with IL-7. Group-wise analysis showed no significant effects on the clinical course and neuropathology. However, paired twin analysis revealed a delayed disease onset in three twins, which were high responders to the immunization. In addition, we observed markedly opposite effects of the antibody on pathological changes in the spinal cord in high versus low responder twins. In conclusion, promising clinical effect of CD127 blockade observed in a standard inbred/SPF mouse EAE model could only be partially replicated in an outbred/non-SPF non-human primate EAE model. Only in high responders to the immunization we found a positive response to the treatment. The mechanism underpinning this dichotomous response will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABL:

Abelson

ALN:

Axillary lymph node

CLN:

Cervical lymph node

CNS:

Central nervous system

cpm:

Counts per minute

EAE:

Experimental autoimmune encephalomyelitis

IFA:

Incomplete freunds adjuvant

ILN:

Inguinal lymph node

LLN:

Lumbar lymph nodes

MNC:

Mononuclear cells

MS:

Multiple sclerosis

PBMC:

Peripheral blood mononuclear cells

PD1:

Programmed death receptor 1

PLP:

Proteolipid protein

rhMOG:

Recombinant human myelin oligodendrocyte glycoprotein

SLO:

Secondary lymphoid organ

SPF:

Specific-pathogen free

References

  • ‘t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17:119–125

    Article  PubMed  Google Scholar 

  • Ashbaugh JJ, Brambilla R, Karmally SA, Cabello C, Malek TR, Bethea JR (2013) IL7Ralpha contributes to experimental autoimmune encephalomyelitis through altered T cell responses and nonhematopoietic cell lineages. J Immunol 190:4525–4534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beillard E et al (2003) Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia 17:2474–2486

    Article  CAS  PubMed  Google Scholar 

  • Benjamin D, Sharma V, Knobloch TJ, Armitage RJ, Dayton MA, Goodwin RG (1994) B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors. J Immunol 152:4749–4757

    CAS  PubMed  Google Scholar 

  • Bielekova B, Muraro PA, Golestaneh L, Pascal J, McFarland HF, Martin R (1999) Preferential expansion of autoreactive T lymphocytes from the memory T-cell pool by IL-7. J Neuroimmunol 100:115–123

    Article  CAS  PubMed  Google Scholar 

  • Bonifati C et al (1997) Increased interleukin-7 concentrations in lesional skin and in the sera of patients with plaque-type psoriasis. Clin Immunol Immunopathol 83:41–44

    Article  CAS  PubMed  Google Scholar 

  • Haanstra KG et al (2013) Induction of experimental autoimmune encephalomyelitis with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund’s adjuvant in three non-human primate species. J Neuroimmune Pharm 8:1251–1264

    Article  Google Scholar 

  • Jagessar SA et al (2010) Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete freund adjuvant. J Neuropathol Exp Neurol 69:372–385

    Article  CAS  PubMed  Google Scholar 

  • Jagessar SA, Heijmans N, Bauer J, Blezer EL, Laman JD, Hellings N, ‘t Hart BA (2012) B-cell depletion abrogates T cell-mediated demyelination in an antibody-nondependent common marmoset experimental autoimmune encephalomyelitis model. J Neuropathol Exp Neurol 71:716–728

    Article  CAS  PubMed  Google Scholar 

  • Jagessar SA et al (2013a) The different clinical effects of anti-BLyS, anti-APRIL and anti-CD20 antibodies point at a critical pathogenic role of gamma-herpesvirus infected B cells in the marmoset EAE model. J Neuroimmune Pharm 8:727–738

    Article  Google Scholar 

  • Jagessar SA, Vierboom M, Blezer EL, Bauer J, ‘t Hart BA, Kap YS (2013b) Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus). Exp Anim 62:159–171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Kap YS et al (2010) Late B cell depletion with a human anti-human CD20 IgG1kappa monoclonal antibody halts the development of experimental autoimmune encephalomyelitis in marmosets. J Immunol 185:3990–4003

    Article  CAS  PubMed  Google Scholar 

  • Kap YS, van Driel N, Laman JD, Tak PP, ‘t Hart BA (2014) CD20+ B cell depletion alters T cell homing. J Immunol 192:4242–4253

    Article  CAS  PubMed  Google Scholar 

  • Kreft KL, Verbraak E, Wierenga-Wolf AF, van Meurs M, Oostra BA, Laman JD, Hintzen RQ (2012) The IL-7Ralpha pathway is quantitatively and functionally altered in CD8 T cells in multiple sclerosis. J Immunol 188:1874–1883

    Article  CAS  PubMed  Google Scholar 

  • Lee LF et al (2011) IL-7 promotes T(H)1 development and serum IL-7 predicts clinical response to interferon-beta in multiple sclerosis. Sci Transl Med 3:93ra68

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lundmark F et al (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39:1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Mackall CL, Fry TJ, Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11:330–342

    Article  CAS  PubMed  Google Scholar 

  • Namen AE et al (1988) Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature 333:571–573

    Article  CAS  PubMed  Google Scholar 

  • Walline CC, Kanakasabi S, Bright JJ (2011) IL-7α confers susceptibility to experimental autoimmune encephalomyelitis. Genes Immun 12:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yilmaz M, Kendirli SG, Altintas D, Bingol G, Antmen B (2001) Cytokine levels in serum of patients with juvenile rheumatoid arthritis. Clin Rheumatol 20:30–35

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors like to thank Henk van Westbroek (BPRC) for the artwork and Dr. Ed Remarque (BPRC) for statistical advice. Jordon Dunham was funded by the European Union with a Marie Curie Fellowship (ITN NeuroKine; 316722), and the authors are grateful for this support.

Conflict of Interest

Li-Fen Li, Irene Ni, Wenwu Zhai, Guang-Huan Tu and John Lin were full-time employees of Rinat-Pfizer when the study was performed. The other authors report no conflict of interest. Publication of the data, irrespective of outcome, was part of the contractual agreement between Rinat-Pfizer and the BPRC as an independent research center.

Author Contributions

J.D., N.v.D. and Y.K have designed the study and performed the in vivo study as well as the ex vivo experiments and analyses. JB has performed the histology. J.D., J.D.L., B.t.H., and Y.K. have written the paper. B.t.H. and J.D.L. have supervised the in vivo study. L.L., G.T. and J.C.L. designed and performed the in vitro assays of the therapeutic antibodies. I.N. and W.Z. screened, cloned and generated the therapeutic antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda S. Kap.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure 1

(PDF 103 kb)

Supplemental figure 2

(PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunham, J., Lee, LF., van Driel, N. et al. Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 11, 73–83 (2016). https://doi.org/10.1007/s11481-015-9629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9629-6

Keywords

Navigation