Skip to main content

Advertisement

Log in

Nanotherapeutic Approach for Opiate Addiction Using DARPP-32 Gene Silencing in an Animal Model of Opiate Addiction

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Opiates act on the dopaminergic system of the brain and perturb 32 kDa dopamine and adenosine 3′, 5′-monophosphate-regulated phosphoprotein (DARPP-32) function. The DARPP-32 mediated inhibition of protein phosphatase-1 (PP-1) and modulation of transcriptional factor CREB is critical to the changes in neuronal plasticity that result in behavioral responses during drug abuse. To investigate the role of DARPP-32 mediated signaling on withdrawal behavior in a rat model of opiate addiction, we used intracerebral administration of gold nanorods (GNR) complexed to DARPP-32 siRNA to silence DARPP-32 gene expression and measure its effects on the opiate withdrawal syndrome. We hypothesized that DARPP-32 siRNA will suppress the neurochemical changes underlying the withdrawal syndrome and therefore prevent conditioned place aversion by suppressing or removing the constellation of negative effects associated with withdrawal, during the conditioning procedure. Our results showed that opiate addicted animals treated with GNR-DARPP-32 siRNA nanoplex showed lack of condition place aversive behavior consequent to the downregulation of secondary effectors such as PP-1 and CREB which modify transcriptional gene regulation and consequently neuronal plasticity. Thus, nanotechnology based delivery systems could allow sustained knockdown of DARPP-32 gene expression which could be developed into a therapeutic intervention for treating drug addiction by altering reward and motivational systems and interfere with conditioned responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, Impey S, Storm DR, Neve RL, Yin JC, Zachariou V, Nestler EJ (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci U S A 99(17):11435–11440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beitner-Johnson D, Nestler EJ (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J Neurochem 57(1):344–347

    Article  CAS  PubMed  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25(3):515–532

    Article  CAS  PubMed  Google Scholar 

  • Blendy JA, Maldonado R (1998) Genetic analysis of drug addiction: the role of cAMP response element binding protein. J Mol Med (Berl) 76(2):104–110

    Article  CAS  Google Scholar 

  • Bonoiu AC, Mahajan SD, Ding H, Roy I, Yong KT, Kumar R, Hu R, Bergey EJ, Schwartz SA, Prasad PN (2009) Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons”. Proc Natl Acad Sci U S A 106:5546–5550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonoiu AC, Bergey EJ, Ding H, Hu R, Kumar R, Yong KT, Prasad PN, Mahajan SD, Kelly E, Picchione KE, Bhattacharjee A, Ignatowski TA (2011) Gold Nanorod-siRNA Induces Efficient In Vivo Gene Silencing in the Rat Hippocampus. Nanomedicine (Lond) 6(4):617–630

    Article  PubMed Central  CAS  Google Scholar 

  • Borgkvist A, Usiello A, Greengard P, Fisone G (2007) Activation of the cAMP/PKA/DARPP-32 signaling pathway is required for morphine psychomotor stimulation but not for morphine reward. Neuropsychopharmacology 32(9):1995–2003

    Article  CAS  PubMed  Google Scholar 

  • Bozarth MA (1994) Physical dependence produced by central morphine infusions: an anatomical mapping study. Neurosci Biobehav Rev 18:373–383

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, Chergui K, Svenningsson P, Fienberg AA, Greengard P (2000) Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 20(22):8443–8451

    CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, Duman RS, Neve RL, Nestler EJ (1998) Regulation of cocaine reward by CREB. Science 282(5397):2272–2275

    Article  CAS  PubMed  Google Scholar 

  • Chao J, Nestler EJ (2004) Molecular neurobiology of drug addiction. Annu Rev Med 55:113–132

    Article  CAS  PubMed  Google Scholar 

  • Chu NN, Zuo YF, Meng L, Lee DY, Han JS, Cui CL (2007) Peripheral electrical stimulation reversed the cell size reduction and increased BDNF level in the ventral tegmental area in chronic morphine-treated rats. Brain Res 1182:90–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colvis CM, Pollock JD, Goodman RH, Impey S, Dunn J, Mandel G, Champagne FA, Mayford M, Korzus E, Kumar A, Renthal W, Theobald DE, Nestler EJ (2005) Epigenetic mechanisms and gene networks in the nervous system. J Neurosci 25(45):10379–10389

    Article  CAS  PubMed  Google Scholar 

  • Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM (1998) Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest 101(11):2415–2426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O’Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281(5378):838–842

    Article  CAS  PubMed  Google Scholar 

  • Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, Calvert CR, Jokel ES, Fienberg AA, Greengard P, Levine MS (2002) Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 88(6):3010–3020

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga Y, Nishida S, Inoue N, Miyamoto M, Kishioka S, Yamamoto H (1998) Time course of morphine withdrawal and preproenkephalin gene expression in the periaqueductal gray of rats. Brain Res Mol Brain Res 55(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Xiang Y, Sun N, Zhu H, Wang Y, Liu M, Ma Y, Lei H (2007) Metabolic changes in rat prefrontal cortex and hippocampus induced by chronic morphine treatment studied ex vivo by high resolution 1H NMR spectroscopy. Neurochem Int 50(2):386–394

    Article  CAS  PubMed  Google Scholar 

  • Greengard P, Nairn AC, Girault JA, Ouimet CC, Snyder GL, Fisone G, Allen PB, Fienberg A, Nishi A (1998) The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev 26(2–3):274–284

    Article  CAS  PubMed  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: review the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435–447

    Article  CAS  PubMed  Google Scholar 

  • Guitart X, Thompson MA, Mirante CK, Greenberg ME, Nestler EJ (1992) Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus. J Neurochem 58:1168–1171

    Article  CAS  PubMed  Google Scholar 

  • Guitart-Masip M, Johansson B, Fernandez-Teruel A, Canete T, Tobena A, Terenius L, Gimenez-Llort L (2006) Divergent anatomical pattern of D1 and D3 binding and dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa mRNA expression in the Roman rat strains: Implications for drug addiction. Neuroscience 142(4):1231–1243

    Article  CAS  PubMed  Google Scholar 

  • Houshyar H, Galigniana MD, Pratt WB, Woods JH (2001) Differential responsivity of the hypothalamic-pituitary-adrenal axis to glucocorticoid negative-feedback and corticotropin releasing hormone in rats undergoing morphine withdrawal: possible mechanisms involved in facilitated and attenuated stress responses. J Neuroendocrinol 13(10):875–886

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2(10):695–703

    Article  CAS  PubMed  Google Scholar 

  • Mahajan SD, Schwartz SA, Aalinkeel R, Chawda RP, Sykes DE, Nair MP (2005) Morphine modulates chemokine gene regulation in normal human astrocytes. Clin Immunol 115(3):323–332

    Article  CAS  PubMed  Google Scholar 

  • Maldonado R, Stinus L, Gold LH, Koob GF (1992) Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J Pharmacol Exp Ther 261:669–677

    CAS  PubMed  Google Scholar 

  • Morón JA, Gullapalli S, Taylor C, Gupta A, Gomes I, Devi LA (2010) Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology 35(4):955–966

    Article  PubMed Central  PubMed  Google Scholar 

  • Nairn AC, Svenningsson P, Nishi A, Fisone G, Girault JA, Greengard P (2004) The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology 47(Suppl 1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Matsushima Y, Niikura K, Narita M, Takagi S, Nakahara K, Kurahashi K, Abe M, Saeki M, Asato M, Imai S, Ikeda K, Kuzumaki N, Suzuki T (2010) Implication of dopaminergic projection from the ventral tegmental area to the anterior cingulate cortex in μ-opioid-induced place preference. Addict Biol 15(4):434–447

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Hope BT, Widnell KL (1993) Drug addiction:a model for the molecular basis of neural plasticity. Neuron 11:995–1006

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Snyder GL, Greengard P (1997) Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 17(21):8147–8155

    CAS  PubMed  Google Scholar 

  • Nye HE, Hope BT, Kelz MB, Iadarola M, Nestler EJ (1995) Pharmacological studies of the regulation of chronic FOS-related antigen induction by cocaine in thestriatum and nucleus accumbens. J Pharmacol Exp Ther 275:1671–1680

    CAS  PubMed  Google Scholar 

  • Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ, Hughes T, Self DW, Neve RL, Nestler EJ (2005) Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 25:5553–5562

    Article  CAS  PubMed  Google Scholar 

  • Omelchenko N, Sesack SR (2010) Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J Neurosci Res 88(5):981–991

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Radonic A, Thulke S, Mackay I, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313(4):856–862

    Article  CAS  PubMed  Google Scholar 

  • Rezayof A, Zarrindast MR, Sahraei H, Haeri-Rohani A (2003) Involvement of dopamine receptors of the dorsal hippocampus on the acquisition and expression of morphine-induced place preference in rats. J Psychopharmacol 17(4):415–423

    Article  CAS  PubMed  Google Scholar 

  • Snyder GL, Fienberg AA, Huganir RL, Greengard P (1998) A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 18(24):10297–10303

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–96

  • Svenningsson P, Nairn AC, Greengard P (2005) DARPP-32 mediates the actions of multiple drugs of abuse. AAPS J 7(2):E353–E360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi S, Ohshima T, Cho A, Sreenath T, Iadarola MJ, Pant HC, Kim Y, Nairn AC, Brady RO, Greengard P, Kulkarni AB (2005) Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Proc Natl Acad Sci U S A 102(5):1737–1742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teegarden SL, Scott AN, Bale TL (2009) Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience 162(4):924–932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walters CL, Blendy JA (2001) Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J Neurosci 21(23):9438–9444

    CAS  PubMed  Google Scholar 

  • Yang JC, Shan J, Ng KF, Pang P (2000) Morphine and methadone have different effects on calcium channel currents in neuroblastoma cells. Brain Res 870(1–2):199–203

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Stenzel-Poore M, Denver RJ (2007) Structural and functional conservation of vertebrate corticotropin-releasing factor genes: evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 148(5):2518–2531

    Article  CAS  PubMed  Google Scholar 

  • Zachariou V, Sgambato-Faure V, Sasaki T, Svenningsson P, Berton O, Fienberg AA, Nairn AC, Greengard P, Nestler EJ (2006) Phosphorylation of DARPP-32 at Threonine-34 is required for cocaine action. Neuropsychopharmacology 31(3):555–562

    Article  CAS  PubMed  Google Scholar 

  • Zhou LF, Zhu YP (2006) Changes of CREB in rat hippocampus, prefrontal cortex and nucleus accumbens during three phases of morphine induced conditioned place preference in rats. J Zhejiang Univ Sci B 7:107–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the National Institute of Drug Abuse, CEBRA award 1R21DA030108-01 (Mahajan SD).

Conflict of Interest

The authors do not have any conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya D. Mahajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatowski, T.A., Aalinkeel, R., Reynolds, J.L. et al. Nanotherapeutic Approach for Opiate Addiction Using DARPP-32 Gene Silencing in an Animal Model of Opiate Addiction. J Neuroimmune Pharmacol 10, 136–152 (2015). https://doi.org/10.1007/s11481-015-9585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9585-1

Keywords

Navigation