Skip to main content

Advertisement

Log in

Dynamic Nature of the p75 Neurotrophin Receptor in Response to Injury and Disease

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Neurotrophins and their respective tropomyosin related kinase (Trk) receptors (TrkA, TrkB, and TrkC) and the p75 neurotrophin receptor (p75NTR) play a fundamental role in the development and maintenance of the nervous system making them important targets for treatment of neurodegenerative diseases. Whereas Trk receptors are directly activated by specific neurotrophins, the p75NTR is a multifunctional receptor that exerts its effects via heterodimeric interactions with TrkA, TrkB, TrkC, sortilin or the Nogo receptor to regulate a wide array of cellular functions. By partnering with different receptors the p75NTR regulates binding of mature versus pro-neurotrophins and activation of different signaling pathways with outcomes ranging from growth and survival to cell death. While the developmental downregulation of the p75NTR has raised questions regarding its role in the mature nervous system, recent data have revealed widespread expression of low levels, a role in synaptic plasticity and adult neurogenesis and upregulation in response to injury or disease. Studies are needed to better understand these processes, particularly in the damaged nervous system, but will be complicated by expression of p75NTR on immune cells including macrophages and microglia that are intimately involved in disease and repair processes. Recent approaches that regulate p75NTR function with small non-peptide ligands have demonstrated potent neuroprotection in models of injury and neurodegenerative diseases that highlight the importance of the p75NTR as a therapeutic target. Future studies hold the promise of revealing a wealth of information on the multifaceted actions of the p75NTR that will inform the design of new neurotrophin-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali TK, Al-Gayyar MM, Matragoon S, Pillai BA, Abdelsaid MA, Nussbaum JJ, El-Remessy AB (2011) Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury. Diabetologia 54:657–668

    PubMed  CAS  Google Scholar 

  • Aloe L, Rocco ML, Bianchi P, Manni L (2012) Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 10:239

    PubMed  CAS  PubMed Central  Google Scholar 

  • Al-Shawi R, Hafner A, Olsen J, Chun S, Raza S, Thrasivoulou C, Lovestone S, Killick R, Simons P, Cowen T (2008) Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci 27:2103–2114

    PubMed  Google Scholar 

  • Althaus HH, Richter-Landsberg C (2000) Glial cells as targets and producers of neurotrophins. Int Rev Cytol 197:203–277

    PubMed  CAS  Google Scholar 

  • Anton ES, Weskamp G, Reichardt LF, Matthew WD (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci U S A 91:2795–2799

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arnett MG, Ryals JM, Wright DE (2007) Pro-NGF, sortilin, and p75NTR: potential mediators of injury-induced apoptosis in the mouse dorsal root ganglion. Brain Res 1183:32–42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aronica E, Ozbas-Gerceker F, Redeker S, Ramkema M, Spliet WG, van Rijen PC, Leenstra S, Gorter JA, Troost D (2004) Expression and cellular distribution of high- and low-affinity neurotrophin receptors in malformations of cortical development. Acta Neuropathol 108:422–434

    PubMed  CAS  Google Scholar 

  • Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, Bresnahan JC, Hempstead BL, Yoon SO (2002) ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36:375–386

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bengoechea TG, Chen Z, O’Leary DA, Masliah E, Lee KF (2009) p75 reduces beta-amyloid-induced sympathetic innervation deficits in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 106:7870–7875

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berzi A, Ayata CK, Cavalcante P, Falcone C, Candiago E, Motta T, Bernasconi P, Hohlfeld R, Mantegazza R, Meinl E, Farina C (2008) BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology. J Neuroimmunol 197:128–139

    PubMed  CAS  Google Scholar 

  • Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brunello N, Reynolds M, Wrathall JR, Mocchetti I (1990) Increased nerve growth factor receptor mRNA in contused rat spinal cord. Neurosci Lett 118:238–240

    PubMed  CAS  Google Scholar 

  • Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A 103:6735–6740

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bui NT, Konig HG, Culmsee C, Bauerbach E, Poppe M, Krieglstein J, Prehn JH (2002) p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and rat hippocampal neurones. J Neurochem 81:594–605

    PubMed  CAS  Google Scholar 

  • Burgi B, Otten UH, Ochensberger B, Rihs S, Heese K, Ehrhard PB, Ibanez CF, Dahinden CA (1996) Basophil priming by neurotrophic factors. Activation through the trk receptor. J Immunol 157:5582–5588

    PubMed  CAS  Google Scholar 

  • Caroleo MC, Costa N, Bracci-Laudiero L, Aloe L (2001) Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors. J Neuroimmunol 113:193–201

    PubMed  CAS  Google Scholar 

  • Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 103:203–218

    PubMed  CAS  Google Scholar 

  • Ceni C, Kommaddi RP, Thomas R, Vereker E, Liu X, McPherson PS, Ritter B, Barker PA (2010) The p75NTR intracellular domain generated by neurotrophin-induced receptor cleavage potentiates Trk signaling. J Cell Sci 123:2299–2307

    PubMed  CAS  Google Scholar 

  • Chakravarthy B, Menard M, Ito S, Gaudet C, Dal Pra I, Armato U, Whitfield J (2012) Hippocampal membrane-associated p75NTR levels are increased in Alzheimer’s disease. J Alzheimers Dis 30:675–684

    PubMed  CAS  Google Scholar 

  • Chao MV (1994) The p75 neurotrophin receptor. J Neurobiol 25:1373–1385

    PubMed  CAS  Google Scholar 

  • Chao MV, Rajagopal R, Lee FS (2006) Neurotrophin signalling in health and disease. Clin Sci (Lond) 110:167–173

    CAS  Google Scholar 

  • Chen LW, Yung KK, Chan YS, Shum DK, Bolam JP (2008) The proNGF-p75NTR-sortilin signalling complex as new target for the therapeutic treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 7:512–523

    PubMed  CAS  Google Scholar 

  • Choi S, Friedman WJ (2009) Inflammatory cytokines IL-1beta and TNF-alpha regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms. ASN Neuro 1

  • Clewes O, Fahey MS, Tyler SJ, Watson JJ, Seok H, Catania C, Cho K, Dawbarn D, Allen SJ (2008) Human ProNGF: biological effects and binding profiles at TrkA, P75NTR and sortilin. J Neurochem 107:1124–1135

    PubMed  CAS  Google Scholar 

  • Colombo E, Romaggi S, Blasevich F, Mora M, Falcone C, Lochmuller H, Morandi L, Farina C (2012) The neurotrophin receptor p75NTR is induced on mature myofibres in inflammatory myopathies and promotes myotube survival to inflammatory stress. Neuropathol Appl Neurobiol 38:367–378

    PubMed  CAS  Google Scholar 

  • Cosgaya JM, Chan JR, Shooter EM (2002) The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298:1245–1248

    PubMed  CAS  Google Scholar 

  • Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF (2004) The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog Brain Res 146:41–62

    PubMed  CAS  Google Scholar 

  • Counts SE, Nadeem M, Wuu J, Ginsberg SD, Saragovi HU, Mufson EJ (2004) Reduction of cortical TrkA but not p75(NTR) protein in early-stage Alzheimer’s disease. Ann Neurol 56:520–531

    PubMed  CAS  Google Scholar 

  • Cragnolini AB, Friedman WJ (2008) The function of p75NTR in glia. Trends Neurosci 31:99–104

    PubMed  CAS  Google Scholar 

  • Cragnolini AB, Huang Y, Gokina P, Friedman WJ (2009) Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor. GLIA 57:1386–1392

    PubMed  PubMed Central  Google Scholar 

  • Dechant G, Barde YA (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5:1131–1136

    PubMed  CAS  Google Scholar 

  • Deinhardt K, Kim T, Spellman DS, Mains RE, Eipper BA, Neubert TA, Chao MV, Hempstead BL (2011) Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci Signal 4:ra82

    PubMed  PubMed Central  Google Scholar 

  • Domeniconi M, Hempstead BL, Chao MV (2007) Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol Cell Neurosci 34:271–279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dowling P, Ming X, Raval S, Husar W, Casaccia-Bonnefil P, Chao M, Cook S, Blumberg B (1999) Up-regulated p75NTR neurotrophin receptor on glial cells in MS plaques. Neurology 53:1676–1682

    PubMed  CAS  Google Scholar 

  • Ernfors P, Hallbook F, Ebendal T, Shooter EM, Radeke MJ, Misko TP, Persson H (1988) Developmental and regional expression of beta-nerve growth factor receptor mRNA in the chick and rat. Neuron 1:983–996

    PubMed  CAS  Google Scholar 

  • Ernfors P, Henschen A, Olson L, Persson H (1989) Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2:1605–1613

    PubMed  CAS  Google Scholar 

  • Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR, Hempstead BL (2001) The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276:32687–32695

    PubMed  CAS  Google Scholar 

  • Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220

    PubMed  CAS  Google Scholar 

  • Fan YJ, Wu LL, Li HY, Wang YJ, Zhou XF (2008) Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci 27:2380–2390

    PubMed  Google Scholar 

  • Ferri CC, Moore FA, Bisby MA (1998) Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. J Neurobiol 34:1–9

    PubMed  CAS  Google Scholar 

  • Fischer TC, Lauenstein HD, Serowka F, Pilzner C, Groneberg DA, Welker P (2008) Pan-neurotrophin receptor p75NTR expression is strongly induced in lesional atopic mast cells. Clin Exp Allergy 38:1168–1173

    PubMed  CAS  Google Scholar 

  • Frade JM, Barde YA (1998) Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20:35–41

    PubMed  CAS  Google Scholar 

  • Gai WP, Zhou XF, Rush RA (1996) Analysis of low affinity neurotrophin receptor (p75) expression in glia of the CNS-PNS transition zone following dorsal root transection. Neuropathol Appl Neurobiol 22:434–439

    PubMed  CAS  Google Scholar 

  • Garaci E, Caroleo MC, Aloe L, Aquaro S, Piacentini M, Costa N, Amendola A, Micera A, Calio R, Perno CF, Levi-Montalcini R (1999) Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. Proc Natl Acad Sci U S A 96:14013–14018

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia N, Tomas M, Santafe MM, Lanuza MA, Besalduch N, Tomas J (2010) Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction. J Peripher Nerv Syst 15:40–49

    PubMed  CAS  Google Scholar 

  • Gehler S, Gallo G, Veien E, Letourneau PC (2004) p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity. J Neurosci 24:4363–4372

    PubMed  CAS  Google Scholar 

  • Ginsberg SD, Che S, Wuu J, Counts SE, Mufson EJ (2006) Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J Neurochem 97:475–487

    PubMed  CAS  Google Scholar 

  • Guo J, Wang J, Liang C, Yan J, Wang Y, Liu G, Jiang Z, Zhang L, Wang X, Zhou X, Liao H (2013) proNGF inhibits proliferation and oligodendrogenesis of postnatal hippocampal neural stem/progenitor cells through p75NTR in vitro. Stem Cell Res 11:874–887

    PubMed  CAS  Google Scholar 

  • Hannila SS, Kawaja MD (2003) Distribution of central sensory axons in transgenic mice overexpressing nerve growth factor and lacking functional p75 neurotrophin receptor expression. Eur J Neurosci 18:312–322

    PubMed  Google Scholar 

  • Harrington AW, Leiner B, Blechschmitt C, Arevalo JC, Lee R, Morl K, Meyer M, Hempstead BL, Yoon SO, Giehl KM (2004) Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci U S A 101:6226–6230

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hartmann M, Brigadski T, Erdmann KS, Holtmann B, Sendtner M, Narz F, Lessmann V (2004) Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J Cell Sci 117:5803–5814

    PubMed  CAS  Google Scholar 

  • Hasan W, Pedchenko T, Krizsan-Agbas D, Baum L, Smith PG (2003) Sympathetic neurons synthesize and secrete pro-nerve growth factor protein. J Neurobiol 57:38–53

    PubMed  CAS  Google Scholar 

  • Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70:699–707

    PubMed  CAS  Google Scholar 

  • Hempstead BL (2006) Dissecting the diverse actions of pro- and mature neurotrophins. Curr Alzheimer Res 3:19–24

    PubMed  CAS  Google Scholar 

  • Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV (1991) High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350:678–683

    PubMed  CAS  Google Scholar 

  • Hu B, Yip HK, So KF (1998) Localization of p75 neurotrophin receptor in the retina of the adult SD rat: an immunocytochemical study at light and electron microscopic levels. GLIA 24:187–197

    PubMed  CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ibanez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35:431–440

    PubMed  CAS  Google Scholar 

  • James SE, Burden H, Burgess R, Xie Y, Yang T, Massa SM, Longo FM, Lu Q (2008) Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants. Neurotoxicology 29:605–612

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, Breiderhoff T, Gotthardt M, Lin F, Eilers A, Petersen CM, Lewin GR, Hempstead BL, Willnow TE, Nykjaer A (2007) Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 10:1449–1457

    PubMed  CAS  Google Scholar 

  • Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, Carter BD (2010) p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem 285:20358–20368

    PubMed  CAS  PubMed Central  Google Scholar 

  • Knowles JK, Rajadas J, Nguyen TV, Yang T, LeMieux MC, Vander Griend L, Ishikawa C, Massa SM, Wyss-Coray T, Longo FM (2009) The p75 neurotrophin receptor promotes amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci 29:10627–10637

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kobayashi M, Ishibashi S, Tomimitsu H, Yokota T, Mizusawa H (2012) Proliferating immature Schwann cells contribute to nerve regeneration after ischemic peripheral nerve injury. J Neuropathol Exp Neurol 71:511–519

    PubMed  CAS  Google Scholar 

  • Kokaia Z, Andsberg G, Martinez-Serrano A, Lindvall O (1998) Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience 84:1113–1125

    PubMed  CAS  Google Scholar 

  • Kraemer BR, Yoon SO, Carter BD (2014) The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 220:121–164

    PubMed  CAS  Google Scholar 

  • Labouyrie E, Parrens M, de Mascarel A, Bloch B, Merlio JP (1997) Distribution of NGF receptors in normal and pathologic human lymphoid tissues. J Neuroimmunol 77:161–173

    PubMed  Google Scholar 

  • Le AP, Friedman WJ (2012) Matrix metalloproteinase-7 regulates cleavage of pro-nerve growth factor and is neuroprotective following kainic acid-induced seizures. J Neurosci 32:703–712

    PubMed  CAS  Google Scholar 

  • Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR, Di Polo A, Barker PA (2010) ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci U S A 107:3817–3822

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19:514–520

    PubMed  CAS  Google Scholar 

  • Liu W, Glueckert R, Kinnefors A, Schrott-Fischer A, Bitsche M, Rask-Andersen H (2012) Distribution of P75 neurotrophin receptor in adult human cochlea–an immunohistochemical study. Cell Tissue Res 348:407–415

    PubMed  CAS  Google Scholar 

  • Longo FM, Massa SM (2013) Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 12:507–525

    PubMed  Google Scholar 

  • Lowry KS, Murray SS, McLean CA, Talman P, Mathers S, Lopes EC, Cheema SS (2001) A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2:127–134

    PubMed  CAS  Google Scholar 

  • Martinez-Murillo R, Caro L, Nieto-Sampedro M (1993) Lesion-induced expression of low-affinity nerve growth factor receptor-immunoreactive protein in Purkinje cells of the adult rat. Neuroscience 52:587–593

    PubMed  CAS  Google Scholar 

  • Massa SM, Xie Y, Yang T, Harrington AW, Kim ML, Yoon SO, Kraemer R, Moore LA, Hempstead BL, Longo FM (2006) Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. J Neurosci 26:5288–5300

    PubMed  CAS  Google Scholar 

  • McCaffrey G, Welker J, Scott J, der Salm L, Grimes ML (2009) High-resolution fractionation of signaling endosomes containing different receptors. Traffic 10:938–950

    PubMed  CAS  PubMed Central  Google Scholar 

  • McDonald CL, Bandtlow C, Reindl M (2011) Targeting the Nogo receptor complex in diseases of the central nervous system. Curr Med Chem 18:234–244

    PubMed  CAS  Google Scholar 

  • Meeker RB, Poulton W, Feng WH, Hudson L, Longo FM (2011) Suppression of Immunodeficiency Virus-Associated Neural Damage by the p75 Neurotrophin Receptor Ligand, LM11A-31, in an In Vitro Feline Model. J Neuroimmune Pharmacol

  • Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228

    PubMed  CAS  Google Scholar 

  • Michaelsen K, Zagrebelsky M, Berndt-Huch J, Polack M, Buschler A, Sendtner M, Korte M (2010) Neurotrophin receptors TrkB.T1 and p75NTR cooperate in modulating both functional and structural plasticity in mature hippocampal neurons. Eur J Neurosci 32:1854–1865

    PubMed  CAS  Google Scholar 

  • Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 8:1703–1718

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mufson EJ, Wuu J, Counts SE, Nykjaer A (2010) Preservation of cortical sortilin protein levels in MCI and Alzheimer’s disease. Neurosci Lett 471:129–133

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakajima K, Kikuchi Y, Ikoma E, Honda S, Ishikawa M, Liu Y, Kohsaka S (1998) Neurotrophins regulate the function of cultured microglia. GLIA 24:272–289

  • Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95:5779–5784

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nguyen TV, Shen L, Vander Griend L, Quach LN, Belichenko NP, Saw N, Yang T, Shamloo M, Wyss-Coray T, Massa SM, Longo FM (2014) Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AbetaPPL/S Transgenic Mice. J Alzheimers Dis

  • Nykjaer A, Willnow TE (2012) Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 35:261–270

    PubMed  CAS  Google Scholar 

  • Obianyo O, Ye K (2013) Novel small molecule activators of the Trk family of receptor tyrosine kinases. Biochim Biophys Acta 1834:2213–2218

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ozbas-Gerceker F, Gorter JA, Redeker S, Ramkema M, van der Valk P, Baayen JC, Ozguc M, Saygi S, Soylemezoglu F, Akalin N, Troost D, Aronica E (2004) Neurotrophin receptor immunoreactivity in the hippocampus of patients with mesial temporal lobe epilepsy. Neuropathol Appl Neurobiol 30:651–664

    PubMed  CAS  Google Scholar 

  • Pedraza CE, Podlesniy P, Vidal N, Arevalo JC, Lee R, Hempstead B, Ferrer I, Iglesias M, Espinet C (2005) Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR. Am Journal Pathol 166:533–543

    CAS  Google Scholar 

  • Pehar M, Cassina P, Vargas MR, Xie Y, Beckman JS, Massa SM, Longo FM, Barbeito L (2006) Modulation of p75-dependent motor neuron death by a small non-peptidyl mimetic of the neurotrophin loop 1 domain. Eur J Neurosci 24:1575–1580

    PubMed  Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63:641–649

    PubMed  CAS  Google Scholar 

  • Perini G, Della-Bianca V, Politi V, Della Valle G, Dal-Pra I, Rossi F, Armato U (2002) Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med 195:907–918

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perlson E, Jeong GB, Ross JL, Dixit R, Wallace KE, Kalb RG, Holzbaur EL (2009) A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J Neurosci 29:9903–9917

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petratos S, Gonzales MF, Azari MF, Marriott M, Minichiello RA, Shipham KA, Profyris C, Nicolaou A, Boyle K, Cheema SS, Kilpatrick TJ (2004) Expression of the low-affinity neurotrophin receptor, p75(NTR), is upregulated by oligodendroglial progenitors adjacent to the subventricular zone in response to demyelination. GLIA 48:64–75

    PubMed  Google Scholar 

  • Raap U, Goltz C, Deneka N, Bruder M, Renz H, Kapp A, Wedi B (2005) Brain-derived neurotrophic factor is increased in atopic dermatitis and modulates eosinophil functions compared with that seen in nonatopic subjects. J Allergy Clin Immunol 115:1268–1275

    PubMed  CAS  Google Scholar 

  • Ragin AB, Wu Y, Ochs R, Du H, Epstein LG, Conant K, McArthur JC (2011) Marked relationship between matrix metalloproteinase 7 and brain atrophy in HIV infection. J Neurovirol 17:153–158

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ralainirina N, Brons NH, Ammerlaan W, Hoffmann C, Hentges F, Zimmer J (2010) Mouse natural killer (NK) cells express the nerve growth factor receptor TrkA, which is dynamically regulated. PLoS One 5:e15053

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ramer M, Bisby M (1997) Reduced sympathetic sprouting occurs in dorsal root ganglia after axotomy in mice lacking low-affinity neurotrophin receptor. Neurosci Lett 228:9–12

    PubMed  CAS  Google Scholar 

  • Raychaudhuri SP, Raychaudhuri SK, Atkuri KR, Herzenberg LA (2011) Nerve growth factor: a key local regulator in the pathogenesis of inflammatory arthritis. Arthritis Rheum 63:3243–3252

    PubMed  CAS  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    PubMed  CAS  PubMed Central  Google Scholar 

  • Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB (2014) Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System. Mol Neurobiol

  • Roberti G, Mantelli F, Macchi I, Massaro-Giordano M, Centofanti M (2014) Nerve growth factor modulation of retinal ganglion cell physiology. J Cell Physiol 229:1130–1133

    PubMed  CAS  Google Scholar 

  • Rogers ML, Bailey S, Matusica D, Nicholson I, Muyderman H, Pagadala PC, Neet KE, Zola H, Macardle P, Rush RA (2010) ProNGF mediates death of Natural Killer cells through activation of the p75NTR-sortilin complex. J Neuroimmunol 226:93–103

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosch H, Schweigreiter R, Bonhoeffer T, Barde YA, Korte M (2005) The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci U S A 102:7362–7367

    PubMed  PubMed Central  Google Scholar 

  • Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233

    PubMed  CAS  Google Scholar 

  • Roux PP, Colicos MA, Barker PA, Kennedy TE (1999) p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J Neurosci 19:6887–6896

    PubMed  CAS  Google Scholar 

  • Sariola H (2001) The neurotrophic factors in non-neuronal tissues. Cell Mol Life Sci 58:1061–1066

    PubMed  CAS  Google Scholar 

  • Scarpi D, Cirelli D, Matrone C, Castronovo G, Rosini P, Occhiato EG, Romano F, Bartali L, Clemente AM, Bottegoni G, Cavalli A, De Chiara G, Bonini P, Calissano P, Palamara AT, Garaci E, Torcia MG, Guarna A, Cozzolino F (2012) Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death Dis 3:e339

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seeburger JL, Tarras S, Natter H, Springer JE (1993) Spinal cord motoneurons express p75NGFR and p145trkB mRNA in amyotrophic lateral sclerosis. Brain Res 621:111–115

    PubMed  CAS  Google Scholar 

  • Shi J, Longo FM, Massa SM (2013) A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells 31:2561–2574

    PubMed  CAS  Google Scholar 

  • Skaper SD (2008) The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 7:46–62

    PubMed  CAS  Google Scholar 

  • Skeldal S, Matusica D, Nykjaer A, Coulson EJ (2011) Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling?: neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). Bioessays 33:614–625

    PubMed  CAS  Google Scholar 

  • Skoff AM, Adler JE (2006) Nerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors. Exp Neurol 197:430–436

    PubMed  CAS  Google Scholar 

  • Song XY, Zhou FH, Zhong JH, Wu LL, Zhou XF (2006) Knockout of p75(NTR) impairs re-myelination of injured sciatic nerve in mice. J Neurochem 96:833–842

    PubMed  CAS  Google Scholar 

  • Sotthibundhu A, Li QX, Thangnipon W, Coulson EJ (2009) Abeta(1–42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol Aging 30:1975–1985

    PubMed  CAS  Google Scholar 

  • Srinivasan B, Roque CH, Hempstead BL, Al-Ubaidi MR, Roque RS (2004) Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J Biol Chem 279:41839–41845

    PubMed  CAS  Google Scholar 

  • Steiner JP, Nath A (2014) Neurotrophin strategies for neuroprotection: are they sufficient? J Neuroimmune Pharm 9:182–194

    Google Scholar 

  • Stoica G, Lungu G, Kim HT, Wong PK (2008) Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res 1208:204–216

    PubMed  CAS  Google Scholar 

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 7:e35883

    PubMed  CAS  PubMed Central  Google Scholar 

  • Syroid DE, Maycox PJ, Soilu-Hanninen M, Petratos S, Bucci T, Burrola P, Murray S, Cheema S, Lee KF, Lemke G, Kilpatrick TJ (2000) Induction of postnatal schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci 20:5741–5747

    PubMed  CAS  Google Scholar 

  • Tanis KQ, Newton SS, Duman RS (2007) Targeting neurotrophic/growth factor expression and signaling for antidepressant drug development. CNS Neurol Disord Drug Targets 6:151–160

    PubMed  CAS  Google Scholar 

  • Taniuchi M, Clark HB, Johnson EM Jr (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci U S A 83:4094–4098

    PubMed  CAS  PubMed Central  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    PubMed  CAS  Google Scholar 

  • Teng KK, Felice S, Kim T, Hempstead BL (2010) Understanding proneurotrophin actions: recent advances and challenges. Dev Neurobiol 70:350–359

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tep C, Lim TH, Ko PO, Getahun S, Ryu JC, Goettl VM, Massa SM, Basso M, Longo FM, Yoon SO (2013) Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J Neurosci 33:397–410

    PubMed  CAS  PubMed Central  Google Scholar 

  • Terry AV Jr, Kutiyanawalla A, Pillai A (2011) Age-dependent alterations in nerve growth factor (NGF)-related proteins, sortilin, and learning and memory in rats. Physiol Behav 102:149–157

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tomita K, Kubo T, Matsuda K, Fujiwara T, Yano K, Winograd JM, Tohyama M, Hosokawa K (2007) The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. GLIA 55:1199–1208

    PubMed  Google Scholar 

  • Turner BJ, Cheah IK, Macfarlane KJ, Lopes EC, Petratos S, Langford SJ, Cheema SS (2003) Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 87:752–763

    PubMed  CAS  Google Scholar 

  • Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268

    PubMed  CAS  Google Scholar 

  • Underwood CK, Coulson EJ (2008) The p75 neurotrophin receptor. Int J Biochem Cell Biol 40:1664–1668

    PubMed  CAS  Google Scholar 

  • Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Kjolby M, Richner M, Erdmann B, Nyengaard JR, Tessarollo L, Lewin GR, Willnow TE, Chao MV, Nykjaer A (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14:54–61

    PubMed  CAS  Google Scholar 

  • VanGuilder Starkey HD, Sonntag WE, Freeman WM (2013) Increased hippocampal NgR1 signaling machinery in aged rats with deficits of spatial cognition. Eur J Neurosci 37:1643–1658

    PubMed  PubMed Central  Google Scholar 

  • Volosin M, Trotter C, Cragnolini A, Kenchappa RS, Light M, Hempstead BL, Carter BD, Friedman WJ (2008) Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. J Neurosci 28:9870–9879

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang YQ, Bian GL, Bai Y, Cao R, Chen LW (2008) Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int 53:56–62

    PubMed  CAS  Google Scholar 

  • Wang YJ, Wang X, Lu JJ, Li QX, Gao CY, Liu XH, Sun Y, Yang M, Lim Y, Evin G, Zhong JH, Masters C, Zhou XF (2011) p75NTR regulates Abeta deposition by increasing Abeta production but inhibiting Abeta aggregation with its extracellular domain. J Neurosci 31:2292–2304

    PubMed  CAS  Google Scholar 

  • Wei Y, Wang N, Lu Q, Zhang N, Zheng D, Li J (2007) Enhanced protein expressions of sortilin and p75NTR in retina of rat following elevated intraocular pressure-induced retinal ischemia. Neurosci Lett 429:169–174

    PubMed  CAS  Google Scholar 

  • Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    PubMed  CAS  Google Scholar 

  • Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, Gilchrest BA (1997) Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest 100:2333–2340

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6:461–467

    PubMed  CAS  Google Scholar 

  • Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593

    PubMed  CAS  Google Scholar 

  • Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A 101:8774–8779

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang T, Knowles JK, Lu Q, Zhang H, Arancio O, Moore LA, Chang T, Wang Q, Andreasson K, Rajadas J, Fuller GG, Xie Y, Massa SM, Longo FM (2008) Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS ONE 3:e3604

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL (2009) Neuronal release of proBDNF. Nat Neurosci 12:113–115

    PubMed  PubMed Central  Google Scholar 

  • Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF (2007) p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J Neurosci 27:5146–5155

    PubMed  CAS  Google Scholar 

  • Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25:9989–9999

    PubMed  CAS  Google Scholar 

  • Zhou XF, Rush RA, McLachlan EM (1996) Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci 16:2901–2911

    PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Meeker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeker, R., Williams, K. Dynamic Nature of the p75 Neurotrophin Receptor in Response to Injury and Disease. J Neuroimmune Pharmacol 9, 615–628 (2014). https://doi.org/10.1007/s11481-014-9566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9566-9

Keywords

Navigation