Skip to main content

Advertisement

Log in

Microbial Induction of Vascular Pathology in the CNS

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The central nervous system (CNS) is a finely tuned organ that participates in nearly every aspect of our day-to-day function. Neurons lie at the core of this functional unit and maintain an active dialogue with one another as well as their fellow CNS residents (e.g. astrocytes, oligodendrocytes, microglia). Because of this complex dialogue, it is essential that the CNS milieu be tightly regulated in order to permit uninterrupted and efficient neural chemistry. This is accomplished in part by anatomical barriers that segregate vascular components from the cerebral spinal fluid (CSF) and brain parenchyma. These barriers impede entry of noxious materials and enable the CNS to maintain requisite protein and ionic balances for constant electrochemical signaling. Under homeostatic conditions, the CNS is protected by the presence of specialized endothelium/epithelium, the blood brain barrier (BBB), and the blood-CSF barrier. However, following CNS infection these protective barriers can be comprised, sometimes resulting in severe neurological complications triggered by an imbalance or blockage of neural chemistry. In some instances, these disruptions are severe enough to be fatal. This review focuses on a selection of microbes (both viruses and parasites) that compromise vascular barriers and induce neurological complications upon gaining access to the CNS. Emphasis is placed on CNS diseases that result from a pathogenic interplay between host immune defenses and the invading microbe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2009) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Google Scholar 

  • Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107(Pt 12):3655–3663

    CAS  PubMed  Google Scholar 

  • Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, Sorokin LM (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019

    CAS  PubMed  Google Scholar 

  • Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    CAS  PubMed  Google Scholar 

  • Aleksandrowicz P, Wolf K, Falzarano D, Feldmann H, Seebach J, Schnittler H (2008) Viral haemorrhagic fever and vascular alterations. Hamostaseologie 28:77–84

    CAS  PubMed  Google Scholar 

  • Allan JE, Doherty PC (1986) Natural killer cells contribute to inflammation but do not appear to be essential for the induction of clinical lymphocytic choriomeningitis. Scand J Immunol 24:153–162

    CAS  PubMed  Google Scholar 

  • Amani V, Vigario AM, Belnoue E, Marussig M, Fonseca L, Mazier D, Renia L (2000) Involvement of IFN-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol 30:1646–1655

    CAS  PubMed  Google Scholar 

  • Andersson EC, Christensen JP, Marker O, Thomsen AR (1994) Changes in cell adhesion molecule expression on T cells associated with systemic virus infection. J Immunol 152:1237–1245

    CAS  PubMed  Google Scholar 

  • Andersson EC, Christensen JP, Scheynius A, Marker O, Thomsen AR (1995) Lymphocytic choriomeningitis virus infection is associated with long-standing perturbation of LFA-1 expression on CD8+ T cells. Scand J Immunol 42:110–118

    CAS  PubMed  Google Scholar 

  • Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S (1996) Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133:43–47

    CAS  PubMed  Google Scholar 

  • Andreeva AY, Piontek J, Blasig IE, Utepbergenov DI (2006) Assembly of tight junction is regulated by the antagonism of conventional and novel protein kinase C isoforms. Int J Biochem Cell Biol 38:222–233

    CAS  PubMed  Google Scholar 

  • Angelini DJ, Hyun SW, Grigoryev DN, Garg P, Gong P, Singh IS, Passaniti A, Hasday JD, Goldblum SE (2006) TNF-alpha increases tyrosine phosphorylation of vascular endothelial cadherin and opens the paracellular pathway through fyn activation in human lung endothelia. Am J Physiol Lung Cell Mol Physiol 291:L1232–L1245

    CAS  PubMed  Google Scholar 

  • Asensio VC, Campbell IL (1997) Chemokine gene expression in the brains of mice with lymphocytic choriomeningitis. J Virol 71:7832–7840

    CAS  PubMed  Google Scholar 

  • Atherton A, Born GV (1972) Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol 222:447–474

    CAS  PubMed  Google Scholar 

  • Baize S, Leroy EM, Georges-Courbot MC, Capron M, Lansoud-Soukate J, Debre P, Fisher-Hoch SP, McCormick JB, Georges AJ (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5:423–426

    CAS  PubMed  Google Scholar 

  • Baumer S, Keller L, Holtmann A, Funke R, August B, Gamp A, Wolburg H, Wolburg-Buchholz K, Deutsch U, Vestweber D (2006) Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood 107:4754–4762

    PubMed  Google Scholar 

  • Bechmann I, Galea I, Perry VH (2007) What is the blood-brain barrier (not)? Trends Immunol 28:5–11

    CAS  PubMed  Google Scholar 

  • Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van Rooijen N, Viguier M, Snounou G, Renia L (2002) On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol 169:6369–6375

    CAS  PubMed  Google Scholar 

  • Belnoue E, Potter SM, Rosa DS, Mauduit M, Gruner AC, Kayibanda M, Mitchell AJ, Hunt NH, Renia L (2008) Control of pathogenic CD8+ T cell migration to the brain by IFN-gamma during experimental cerebral malaria. Parasite Immunol 30:544–553

    CAS  PubMed  Google Scholar 

  • Biswas AK, Hafiz A, Banerjee B, Kim KS, Datta K, Chitnis CE (2007) Plasmodium falciparum uses gC1qR/HABP1/p32 as a receptor to bind to vascular endothelium and for platelet-mediated clumping. PLoS Pathog 3:1271–1280

    CAS  PubMed  Google Scholar 

  • Bockeler M, Stroher U, Seebach J, Afanasieva T, Suttorp N, Feldmann H, Schnittler HJ (2007) Breakdown of paraendothelial barrier function during Marburg virus infection is associated with early tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1. J Infect Dis 196(Suppl 2):S337–S346

    PubMed  Google Scholar 

  • Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86:1245–1257

    CAS  PubMed  Google Scholar 

  • Bosio CM, Aman MJ, Grogan C, Hogan R, Ruthel G, Negley D, Mohamadzadeh M, Bavari S, Schmaljohn A (2003) Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis 188:1630–1638

    CAS  PubMed  Google Scholar 

  • Bradfield PF, Scheiermann C, Nourshargh S, Ody C, Luscinskas FW, Rainger GE, Nash GB, Miljkovic-Licina M, Aurrand-Lions M, Imhof BA (2007) JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood 110:2545–2555

    CAS  PubMed  Google Scholar 

  • Bradfute SB, Braun DR, Shamblin JD, Geisbert JB, Paragas J, Garrison A, Hensley LE, Geisbert TW (2007) Lymphocyte death in a mouse model of Ebola virus infection. J Infect Dis 196(Suppl 2):S296–S304

    PubMed  Google Scholar 

  • Brahic M, Bureau JF, Michiels T (2005) The genetics of the persistent infection and demyelinating disease caused by Theiler’s virus. Annu Rev Microbiol 59:279–298

    CAS  PubMed  Google Scholar 

  • Brett J, Gerlach H, Nawroth P, Steinberg S, Godman G, Stern D (1989) Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J Exp Med 169:1977–1991

    CAS  PubMed  Google Scholar 

  • Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 429:47–62

    CAS  PubMed  Google Scholar 

  • Bwaka MA, Bonnet MJ, Calain P, Colebunders R, De Roo A, Guimard Y, Katwiki KR, Kibadi K, Kipasa MA, Kuvula KJ, Mapanda BB, Massamba M, Mupapa KD, Muyembe-Tamfum JJ, Ndaberey E, Peters CJ, Rollin PE, Van den Enden E (1999) Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo: clinical observations in 103 patients. J Infect Dis 179(Suppl 1):S1–S7

    PubMed  Google Scholar 

  • Camenga DL, Walker DH, Murphy FA (1977) Anticonvulsant prolongation of survival in adult murine lymphocytic choriomeningitis. I. Drug treatment and virologic studies. J Neuropathol Exp Neurol 36:9–20

    CAS  PubMed  Google Scholar 

  • Campanella GS, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA, Colvin RA, Luster AD (2008) Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci USA 105:4814–4819

    Google Scholar 

  • Cardenas WB, Loo YM, Gale M Jr, Hartman AL, Kimberlin CR, Martinez-Sobrido L, Saphire EO, Basler CF (2006) Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80:5168–5178

    CAS  PubMed  Google Scholar 

  • Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205:811–823

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    CAS  PubMed  Google Scholar 

  • Chan SY, Ma MC, Goldsmith MA (2000) Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Gen Virol 81:2155–2159

    CAS  PubMed  Google Scholar 

  • Chavakis T, Keiper T, Matz-Westphal R, Hersemeyer K, Sachs UJ, Nawroth PP, Preissner KT, Santoso S (2004) The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo. J Biol Chem 279:55602–55608

    CAS  PubMed  Google Scholar 

  • Chen JP, Cosgriff TM (2000) Hemorrhagic fever virus-induced changes in hemostasis and vascular biology. Blood Coagul Fibrinolysis 11:461–483

    CAS  PubMed  Google Scholar 

  • Chen L, Zhang Z, Sendo F (2000) Neutrophils play a critical role in the pathogenesis of experimental cerebral malaria. Clin Exp Immunol 120:125–133

    CAS  PubMed  Google Scholar 

  • Christensen JP, Andersson EC, Scheynius A, Marker O, Thomsen AR (1995) Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection. J Immunol 154:5293–5301

    CAS  PubMed  Google Scholar 

  • Clatch RJ, Miller SD, Metzner R, Dal Canto MC, Lipton HL (1990) Monocytes/macrophages isolated from the mouse central nervous system contain infectious Theiler’s murine encephalomyelitis virus (TMEV). Virology 176:244–254

    CAS  PubMed  Google Scholar 

  • Cole GA, Gilden DH, Monjan AA, Nathanson N (1971) Lymphocytic choriomeningitis virus: pathogenesis of acute central nervous system disease. Fed Proc 30:1831–1841

    CAS  PubMed  Google Scholar 

  • Colebunders R, Borchert M (2000) Ebola haemorrhagic fever–a review. J Infect 40:16–20

    CAS  PubMed  Google Scholar 

  • Combes V, Coltel N, Faille D, Wassmer SC, Grau GE (2006) Cerebral malaria: role of microparticles and platelets in alterations of the blood-brain barrier. Int J Parasitol 36:541–546

    CAS  PubMed  Google Scholar 

  • Craig A, Scherf A (2001) Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115:129–143

    CAS  PubMed  Google Scholar 

  • Curfs JH, Hermsen CC, Kremsner P, Neifer S, Meuwissen JH, Van Rooyen N, Eling WM (1993) Tumour necrosis factor-alpha and macrophages in Plasmodium berghei-induced cerebral malaria. Parasitology 107(Pt 2):125–134

    CAS  PubMed  Google Scholar 

  • D’Atri F, Citi S (2002) Molecular complexity of vertebrate tight junctions (Review). Mol Membr Biol 19:103–112

    PubMed  Google Scholar 

  • Del Maschio A, Zanetti A, Corada M, Rival Y, Ruco L, Lampugnani MG, Dejana E (1996) Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 135:497–510

    PubMed  Google Scholar 

  • Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV (2006) Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab 26:797–810

    CAS  PubMed  Google Scholar 

  • DiStasi MR, Ley K (2009) Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol 30:547–556

    CAS  PubMed  Google Scholar 

  • Dixon JE, Allan JE, Doherty PC (1987) The acute inflammatory process in murine lymphocytic choriomeningitis is dependent on Lyt-2+ immune T cells. Cell Immunol 107:8–14

    CAS  PubMed  Google Scholar 

  • Doherty PC, Zinkernagel RM (1974) T-cell-mediated immunopathology in viral infections. Transplant Rev 19:89–120

    CAS  PubMed  Google Scholar 

  • Dominguez MG, Hughes VC, Pan L, Simmons M, Daly C, Anderson K, Noguera-Troise I, Murphy AJ, Valenzuela DM, Davis S, Thurston G, Yancopoulos GD, Gale NW (2007) Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo vasculogenesis but die embryonically because of defects in angiogenesis. Proc Natl Acad Sci USA 104:3243–3248

    CAS  PubMed  Google Scholar 

  • Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623

    CAS  PubMed  Google Scholar 

  • Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511

    Google Scholar 

  • Engwerda CR, Mynott TL, Sawhney S, De Souza JB, Bickle QD, Kaye PM (2002) Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med 195:1371–1377

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO (2000) ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383

    CAS  PubMed  Google Scholar 

  • Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, Bach S, Angiari S, Benati D, Chakir A, Zanetti L, Schio F, Osculati A, Marzola P, Nicolato E, Homeister JW, Xia L, Lowe JB, McEver RP, Osculati F, Sbarbati A, Butcher EC, Constantin G (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14:1377–1383

    CAS  PubMed  Google Scholar 

  • Faille D, Combes V, Mitchell AJ, Fontaine A, Juhan-Vague I, Alessi MC, Chimini G, Fusai T, Grau GE (2009) Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB J 23:3449–3458

    CAS  PubMed  Google Scholar 

  • Faust N, Varas F, Kelly LM, Heck S, Graf T (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719–726

    CAS  PubMed  Google Scholar 

  • Feldmann H, Bugany H, Mahner F, Klenk HD, Drenckhahn D, Schnittler HJ (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70:2208–2214

    CAS  PubMed  Google Scholar 

  • Feldmann H, Jones S, Klenk HD, Schnittler HJ (2003) Ebola virus: from discovery to vaccine. Nat Rev Immunol 3:677–685

    CAS  PubMed  Google Scholar 

  • Filosa JA, Blanco VM (2007) Neurovascular coupling in the mammalian brain. Exp Physiol 92:641–646

    CAS  PubMed  Google Scholar 

  • Finley RW, Mackey LJ, Lambert PH (1982) Virulent P. berghei malaria: prolonged survival and decreased cerebral pathology in cell-dependent nude mice. J Immunol 129:2213–2218

    CAS  PubMed  Google Scholar 

  • Florey HW, Grant LH (1961) Leucocyte migration from small blood vessels stimulated with ultraviolet light: an electron-microscope study. J Pathol Bacteriol 82:13–17

    CAS  PubMed  Google Scholar 

  • Forster C (2008) Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130:55–70

    PubMed  Google Scholar 

  • Fung-Leung WP, Kundig TM, Zinkernagel RM, Mak TW (1991) Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J Exp Med 174:1425–1429

    CAS  PubMed  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    CAS  PubMed  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127:1617–1626

    CAS  PubMed  Google Scholar 

  • Gautam N, Herwald H, Hedqvist P, Lindbom L (2000) Signaling via beta(2) integrins triggers neutrophil-dependent alteration in endothelial barrier function. J Exp Med 191:1829–1839

    CAS  PubMed  Google Scholar 

  • Gautam N, Olofsson AM, Herwald H, Iversen LF, Lundgren-Akerlund E, Hedqvist P, Arfors KE, Flodgaard H, Lindbom L (2001) Heparin-binding protein (HBP/CAP37): a missing link in neutrophil-evoked alteration of vascular permeability. Nat Med 7:1123–1127

    CAS  PubMed  Google Scholar 

  • Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T, Kagan E, Hensley LE (2003) Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 163:2371–2382

    CAS  PubMed  Google Scholar 

  • Gertzberg N, Gurnani T, Neumann P, Forbes AK, Jean-Louis N, Johnson A (2007) Tumor necrosis factor-alpha causes barrier dysfunction mediated by tyrosine198 and tyrosine218 in beta-actin. Am J Physiol Lung Cell Mol Physiol 293:L1219–L1229

    CAS  PubMed  Google Scholar 

  • Goldblum SE, Hennig B, Jay M, Yoneda K, McClain CJ (1989) Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infect Immun 57:1218–1226

    CAS  PubMed  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    CAS  PubMed  Google Scholar 

  • Gory-Faure S, Prandini MH, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M, Huber P (1999) Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126:2093–2102

    CAS  PubMed  Google Scholar 

  • Grau GE, Heremans H, Piguet PF, Pointaire P, Lambert PH, Billiau A, Vassalli P (1989) Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc Natl Acad Sci USA 86:5572–5574

    CAS  PubMed  Google Scholar 

  • Grau GE, Mackenzie CD, Carr RA, Redard M, Pizzolato G, Allasia C, Cataldo C, Taylor TE, Molyneux ME (2003) Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis 187:461–466

    PubMed  Google Scholar 

  • Gupta M, Mahanty S, Ahmed R, Rollin PE (2001) Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 284:20–25

    CAS  PubMed  Google Scholar 

  • Gupta M, Spiropoulou C, Rollin PE (2007) Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virology 364:45–54

    CAS  PubMed  Google Scholar 

  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277:455–461

    CAS  PubMed  Google Scholar 

  • Hammerschmidt DE, Harris PD, Wayland JH, Craddock PR, Jacob HS (1981) Complement-induced granulocyte aggregation in vivo. Am J Pathol 102:146–150

    CAS  PubMed  Google Scholar 

  • Hansen DS, Evans KJ, D’Ombrain MC, Bernard NJ, Sexton AC, Buckingham L, Scalzo AA, Schofield L (2005) The natural killer complex regulates severe malarial pathogenesis and influences acquired immune responses to Plasmodium berghei ANKA. Infect Immun 73:2288–2297

    CAS  PubMed  Google Scholar 

  • Hansen DS, Bernard NJ, Nie CQ, Schofield L (2007) NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol 178:5779–5788

    CAS  PubMed  Google Scholar 

  • Hanum PS, Hayano M, Kojima S (2003) Cytokine and chemokine responses in a cerebral malaria-susceptible or -resistant strain of mice to Plasmodium berghei ANKA infection: early chemokine expression in the brain. Int Immunol 15:633–640

    Google Scholar 

  • Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 141:199–208

    CAS  PubMed  Google Scholar 

  • Hawrylowicz CM, Howells GL, Feldmann M (1991) Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med 174:785–790

    CAS  PubMed  Google Scholar 

  • Hensley LE, Geisbert TW (2005) The contribution of the endothelium to the development of coagulation disorders that characterize Ebola hemorrhagic fever in primates. Thromb Haemost 94:254–261

    CAS  PubMed  Google Scholar 

  • Hensmann M, Kwiatkowski D (2001) Cellular basis of early cytokine response to Plasmodium falciparum. Infect Immun 69:2364–2371

    CAS  PubMed  Google Scholar 

  • Ho M, Hickey MJ, Murray AG, Andonegui G, Kubes P (2000) Visualization of Plasmodium falciparum-endothelium interactions in human microvasculature: mimicry of leukocyte recruitment. J Exp Med 192:1205–1211

    CAS  PubMed  Google Scholar 

  • Hoover RL, Briggs RT, Karnovsky MJ (1978) The adhesive interaction between polymorphonuclear leukocytes and endothelial cells in vitro. Cell 14:423–428

    CAS  PubMed  Google Scholar 

  • Humphrey JH (1955) The mechanism of Arthus reactions. I. The role of polymorphonuclear leucocytes and other factors in reversed passive Arthus reactions in rabbits. Br J Exp Pathol 36:268–282

    CAS  PubMed  Google Scholar 

  • Hunt NH, Grau GE (2003) Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 24:491–499

    CAS  PubMed  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    CAS  PubMed  Google Scholar 

  • Issekutz AC (1981) Vascular responses during acute neutrophilic inflammation. Their relationship to in vivo neutrophil emigration. Lab Invest 45:435–441

    CAS  PubMed  Google Scholar 

  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S (1999) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 147:1351–1363

    CAS  PubMed  Google Scholar 

  • Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154:491–497

    CAS  PubMed  Google Scholar 

  • Jin H, Yan Z, Prabhakar BS, Feng Z, Ma Y, Verpooten D, Ganesh B, He B (2009) The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and Lipopolysaccharide. J Gen Virol 91:352–361

    Google Scholar 

  • Johnson ED, Monjan AA, Morse HC 3rd (1978) Lack of B-cell participation in acute lymphocyte choriomeningitis disease of the central nervous system. Cell Immunol 36:143–150

    CAS  PubMed  Google Scholar 

  • Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, Fasel N, Imhof BA (2002) Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100:2479–2486

    CAS  PubMed  Google Scholar 

  • Johnson AJ, Mendez-Fernandez Y, Moyer AM, Sloma CR, Pirko I, Block MS, Rodriguez M, Pease LR (2005) Antigen-specific CD8+ T cells mediate a peptide-induced fatal syndrome. J Immunol 174:6854–6862

    CAS  PubMed  Google Scholar 

  • Johnson AJ, Suidan GL, McDole J, Pirko I (2007) The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology? Int Rev Neurobiol 79:73–97

    CAS  PubMed  Google Scholar 

  • Kang SS, McGavern DB (2008) Lymphocytic choriomeningitis infection of the central nervous system. Front Biosci 13:4529–4543

    CAS  PubMed  Google Scholar 

  • Kim BS, Palma JP, Kwon D, Fuller AC (2005) Innate immune response induced by Theiler’s murine encephalomyelitis virus infection. Immunol Res 31:1–12

    PubMed  Google Scholar 

  • Kim JV, Kang SS, Dustin ML, McGavern DB (2009) Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–195

    CAS  PubMed  Google Scholar 

  • Lai CH, Kuo KH, Leo JM (2005) Critical role of actin in modulating BBB permeability. Brain Res Brain Res Rev 50:7–13

    CAS  PubMed  Google Scholar 

  • Lampugnani MG, Corada M, Andriopoulou P, Esser S, Risau W, Dejana E (1997) Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J Cell Sci 110(Pt 17):2065–2077

    CAS  PubMed  Google Scholar 

  • Lauterbach H, Zuniga EI, Truong P, Oldstone MB, McGavern DB (2006) Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J Exp Med 203:1963–1975

    CAS  PubMed  Google Scholar 

  • Lentsch AB, Ward PA (2000) Regulation of inflammatory vascular damage. J Pathol 190:343–348

    CAS  PubMed  Google Scholar 

  • Lipton HL (1980) Persistent Theiler’s murine encephalomyelitis virus infection in mice depends on plaque size. J Gen Virol 46:169–177

    CAS  PubMed  Google Scholar 

  • Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA (2000) Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 113(Pt 13):2363–2374

    CAS  PubMed  Google Scholar 

  • Lledo L, Gegundez MI, Saz JV, Bahamontes N, Beltran M (2003) Lymphocytic choriomeningitis virus infection in a province of Spain: analysis of sera from the general population and wild rodents. J Med Virol 70:273–275

    PubMed  Google Scholar 

  • Lucas R, Juillard P, Decoster E, Redard M, Burger D, Donati Y, Giroud C, Monso-Hinard C, De Kesel T, Buurman WA, Moore MW, Dayer JM, Fiers W, Bluethmann H, Grau GE (1997) Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria. Eur J Immunol 27:1719–1725

    CAS  PubMed  Google Scholar 

  • Ma N, Hunt NH, Madigan MC, Chan-Ling T (1996) Correlation between enhanced vascular permeability, up-regulation of cellular adhesion molecules and monocyte adhesion to the endothelium in the retina during the development of fatal murine cerebral malaria. Am J Pathol 149:1745–1762

    CAS  PubMed  Google Scholar 

  • Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B (2003) Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 170:2797–2801

    CAS  PubMed  Google Scholar 

  • Marchesi VT, Florey HW (1960) Electron micrographic observations on the emigration of leucocytes. Q J Exp Physiol Cogn Med Sci 45:343–348

    CAS  PubMed  Google Scholar 

  • Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, Hallene K, Diglaw T, Franic L, Najm I, Janigro D (2007) Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48:732–742

    CAS  PubMed  Google Scholar 

  • Marker O, Nielsen MH, Diemer NH (1984) The permeability of the blood-brain barrier in mice suffering from fatal lymphocytic choriomeningitis virus infection. Acta Neuropathol 63:229–239

    CAS  PubMed  Google Scholar 

  • Marker O, Scheynius A, Christensen JP, Thomsen AR (1995) Virus-activated T cells regulate expression of adhesion molecules on endothelial cells in sites of infection. J Neuroimmunol 62:35–42

    CAS  PubMed  Google Scholar 

  • Martinez-Estrada OM, Manzi L, Tonetti P, Dejana E, Bazzoni G (2005) Opposite effects of tumor necrosis factor and soluble fibronectin on junctional adhesion molecule-A in endothelial cells. Am J Physiol Lung Cell Mol Physiol 288:L1081–L1088

    CAS  PubMed  Google Scholar 

  • Matter K, Balda MS (2003) Holey barrier: claudins and the regulation of brain endothelial permeability. J Cell Biol 161:459–460

    CAS  PubMed  Google Scholar 

  • Matullo CM, O’Regan KJ, Hensley H, Curtis M, Rall GF (2009) Lymphocytic Choriomeningitis Virus-induced mortality in mice is triggered by edema and brain herniation. J Virol 84:312–320

    Google Scholar 

  • McGavern DB, Christen U, Oldstone MB (2002) Molecular anatomy of antigen-specific CD8(+) T cell engagement and synapse formation in vivo. Nat Immunol 3:918–925

    CAS  PubMed  Google Scholar 

  • McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213:221–228

    CAS  PubMed  Google Scholar 

  • Miu J, Mitchell AJ, Muller M, Carter SL, Manders PM, McQuillan JA, Saunders BM, Ball HJ, Lu B, Campbell IL, Hunt NH (2008) Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. J Immunol 180:1217–1230

    CAS  PubMed  Google Scholar 

  • Mohamadzadeh M (2009) Potential factors induced by filoviruses that lead to immune supression. Curr Mol Med 9:174–185

    CAS  PubMed  Google Scholar 

  • Mohamadzadeh M, Coberley SS, Olinger GG, Kalina WV, Ruthel G, Fuller CL, Swenson DL, Pratt WD, Kuhns DB, Schmaljohn AL (2006) Activation of triggering receptor expressed on myeloid cells-1 on human neutrophils by Marburg and Ebola viruses. J Virol 80:7235–7244

    CAS  PubMed  Google Scholar 

  • Mohamadzadeh M, Chen L, Schmaljohn AL (2007) How Ebola and Marburg viruses battle the immune system. Nat Rev Immunol 7:556–567

    CAS  PubMed  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    CAS  PubMed  Google Scholar 

  • Muller I, Munder M, Kropf P, Hansch GM (2009) Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol 30:522–530

    PubMed  Google Scholar 

  • Nansen A, Christensen JP, Ropke C, Marker O, Scheynius A, Thomsen AR (1998) Role of interferon-gamma in the pathogenesis of LCMV-induced meningitis: unimpaired leucocyte recruitment, but deficient macrophage activation in interferon-gamma knock-out mice. J Neuroimmunol 86:202–212

    CAS  PubMed  Google Scholar 

  • Nansen A, Marker O, Bartholdy C, Thomsen AR (2000) CCR2+ and CCR5+ CD8+ T cells increase during viral infection and migrate to sites of infection. Eur J Immunol 30:1797–1806

    CAS  PubMed  Google Scholar 

  • Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS, Heath WR, Engwerda CR, Hickey MJ, Schofield L, Hansen DS (2009) IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog 5:e1000369

    PubMed  Google Scholar 

  • Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920

    CAS  PubMed  Google Scholar 

  • Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170:2221–2228

    CAS  PubMed  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    CAS  PubMed  Google Scholar 

  • Nyqvist D, Giampietro C, Dejana E (2008) Deciphering the functional role of endothelial junctions by using in vivo models. EMBO Rep 9:742–747

    CAS  PubMed  Google Scholar 

  • Oldstone MB, Blount P, Southern PJ, Lampert PW (1986) Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature 321:239–243

    CAS  PubMed  Google Scholar 

  • Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD (2004) Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev 17:174–207

    CAS  PubMed  Google Scholar 

  • Oshima T, Laroux FS, Coe LL, Morise Z, Kawachi S, Bauer P, Grisham MB, Specian RD, Carter P, Jennings S, Granger DN, Joh T, Alexander JS (2001) Interferon-gamma and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res 61:130–143

    CAS  PubMed  Google Scholar 

  • Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:151–158

    CAS  PubMed  Google Scholar 

  • Ostermann G, Fraemohs L, Baltus T, Schober A, Lietz M, Zernecke A, Liehn EA, Weber C (2005) Involvement of JAM-A in mononuclear cell recruitment on inflamed or atherosclerotic endothelium: inhibition by soluble JAM-A. Arterioscler Thromb Vasc Biol 25:729–735

    CAS  PubMed  Google Scholar 

  • Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, Iwamatsu A, Kita T (1999) Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 163:553–557

    CAS  PubMed  Google Scholar 

  • Ozden S, Tangy F, Chamorro M, Brahic M (1986) Theiler’s virus genome is closely related to that of encephalomyocarditis virus, the prototype cardiovirus. J Virol 60:1163–1165

    CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed  Google Scholar 

  • Patnaik JK, Das BS, Mishra SK, Mohanty S, Satpathy SK, Mohanty D (1994) Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg 51:642–647

    CAS  PubMed  Google Scholar 

  • Peng BH, Lee JC, Campbell GA (2003) In vitro protein complex formation with cytoskeleton-anchoring domain of occludin identified by limited proteolysis. J Biol Chem 278:49644–49651

    CAS  PubMed  Google Scholar 

  • Pevear DC, Calenoff M, Rozhon E, Lipton HL (1987) Analysis of the complete nucleotide sequence of the picornavirus Theiler’s murine encephalomyelitis virus indicates that it is closely related to cardioviruses. J Virol 61:1507–1516

    CAS  PubMed  Google Scholar 

  • Piguet PF, Kan CD, Vesin C (2002) Role of the tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice. Lab Invest 82:1155–1166

    CAS  PubMed  Google Scholar 

  • Pino P, Vouldoukis I, Dugas N, Hassani-Loppion G, Dugas B, Mazier D (2003a) Redox-dependent apoptosis in human endothelial cells after adhesion of Plasmodium falciparum-infected erythrocytes. Ann N Y Acad Sci 1010:582–586

    CAS  PubMed  Google Scholar 

  • Pino P, Vouldoukis I, Kolb JP, Mahmoudi N, Desportes-Livage I, Bricaire F, Danis M, Dugas B, Mazier D (2003b) Plasmodium falciparum-infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis 187:1283–1290

    CAS  PubMed  Google Scholar 

  • Pirko I, Suidan GL, Rodriguez M, Johnson AJ (2008) Acute hemorrhagic demyelination in a murine model of multiple sclerosis. J Neuroinflammation 5:31

    PubMed  Google Scholar 

  • Potter S, Chaudhri G, Hansen A, Hunt NH (1999) Fas and perforin contribute to the pathogenesis of murine cerebral malaria. Redox Rep 4:333–335

    CAS  PubMed  Google Scholar 

  • Prins KC, Cardenas WB, Basler CF (2009) Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol 83:3069–3077

    CAS  PubMed  Google Scholar 

  • Qi Y, Dal Canto MC (1996) Effect of Theiler’s murine encephalomyelitis virus and cytokines on cultured oligodendrocytes and astrocytes. J Neurosci Res 45:364–374

    CAS  PubMed  Google Scholar 

  • Ransohoff RM (2009) Immunology: barrier to electrical storms. Nature 457:155–156

    CAS  PubMed  Google Scholar 

  • Reed DS, Hensley LE, Geisbert JB, Jahrling PB, Geisbert TW (2004) Depletion of peripheral blood T lymphocytes and NK cells during the course of Ebola hemorrhagic fever in cynomolgus macaques. Viral Immunol 17:390–400

    CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    CAS  PubMed  Google Scholar 

  • Reid SP, Valmas C, Martinez O, Sanchez FM, Basler CF (2007) Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. J Virol 81:13469–13477

    CAS  PubMed  Google Scholar 

  • Roh MH, Liu CJ, Laurinec S, Margolis B (2002) The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 277:27501–27509

    CAS  PubMed  Google Scholar 

  • Ryabchikova EI, Kolesnikova LV, Luchko SV (1999) An analysis of features of pathogenesis in two animal models of Ebola virus infection. J Infect Dis 179(Suppl 1):S199–S202

    PubMed  Google Scholar 

  • Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408

    CAS  PubMed  Google Scholar 

  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142

    CAS  PubMed  Google Scholar 

  • Sanchez A, Lukwiya M, Bausch D, Mahanty S, Sanchez AJ, Wagoner KD, Rollin PE (2004) Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 78:10370–10377

    CAS  PubMed  Google Scholar 

  • Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 177:145–153

    CAS  PubMed  Google Scholar 

  • Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735

    CAS  PubMed  Google Scholar 

  • Schofield L, Novakovic S, Gerold P, Schwarz RT, McConville MJ, Tachado SD (1996) Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J Immunol 156:1886–1896

    CAS  PubMed  Google Scholar 

  • Schwendemann G, Lohler J, Lehmann-Grube F (1983) Evidence for cytotoxic T-lymphocyte-target cell interaction in brains of mice infected intracerebrally with lymphocytic choriomeningitis virus. Acta Neuropathol 61:183–195

    CAS  PubMed  Google Scholar 

  • Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, Jones S, Feldmann H, Kawaoka Y (2006) Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol 80:10109–10116

    CAS  PubMed  Google Scholar 

  • Simmons G, Wool-Lewis RJ, Baribaud F, Netter RC, Bates P (2002) Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 76:2518–2528

    CAS  PubMed  Google Scholar 

  • Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, Whitbeck JC, Burke E, Buchmeier MJ, Soilleux EJ, Riley JL, Doms RW, Bates P, Pohlmann S (2003) DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305:115–123

    CAS  PubMed  Google Scholar 

  • Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153:933–946

    CAS  PubMed  Google Scholar 

  • Srivastava K, Cockburn IA, Swaim A, Thompson LE, Tripathi A, Fletcher CA, Shirk EM, Sun H, Kowalska MA, Fox-Talbot K, Sullivan D, Zavala F, Morrell CN (2008) Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 4:179–187

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV (2003) Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci 116:4615–4628

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 25:593–606

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281:8379–8388

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6:179–192

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV (2009) Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 284:19053–19066

    CAS  PubMed  Google Scholar 

  • Stevenson MM, Riley EM (2004) Innate immunity to malaria. Nat Rev Immunol 4:169–180

    CAS  PubMed  Google Scholar 

  • Stolpen AH, Guinan EC, Fiers W, Pober JS (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol 123:16–24

    CAS  PubMed  Google Scholar 

  • Storm P, Bartholdy C, Sorensen MR, Christensen JP, Thomsen AR (2006) Perforin-deficient CD8+ T cells mediate fatal lymphocytic choriomeningitis despite impaired cytokine production. J Virol 80:1222–1230

    CAS  PubMed  Google Scholar 

  • Stroher U, West E, Bugany H, Klenk HD, Schnittler HJ, Feldmann H (2001) Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 75:11025–11033

    CAS  PubMed  Google Scholar 

  • Suidan GL, McDole JR, Chen Y, Pirko I, Johnson AJ (2008) Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS ONE 3:e3037

    PubMed  Google Scholar 

  • Tachado SD, Gerold P, McConville MJ, Baldwin T, Quilici D, Schwarz RT, Schofield L (1996) Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol 156:1897–1907

    CAS  PubMed  Google Scholar 

  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    CAS  PubMed  Google Scholar 

  • Takada A, Fujioka K, Tsuiji M, Morikawa A, Higashi N, Ebihara H, Kobasa D, Feldmann H, Irimura T, Kawaoka Y (2004) Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol 78:2943–2947

    CAS  PubMed  Google Scholar 

  • Taoufiq Z, Gay F, Balvanyos J, Ciceron L, Tefit M, Lechat P, Mazier D (2008) Rho kinase inhibition in severe malaria: thwarting parasite-induced collateral damage to endothelia. J Infect Dis 197:1062–1073

    PubMed  Google Scholar 

  • Tuteja R (2007) Malaria - an overview. FEBS J 274:4670–4679

    CAS  PubMed  Google Scholar 

  • Van den Steen PE, Deroost K, Van Aelst I, Geurts N, Martens E, Struyf S, Nie CQ, Hansen DS, Matthys P, Van Damme J, Opdenakker G (2008) CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-gamma-induced chemokines. Eur J Immunol 38:1082–1095

    PubMed  Google Scholar 

  • Villinger F, Rollin PE, Brar SS, Chikkala NF, Winter J, Sundstrom JB, Zaki SR, Swanepoel R, Ansari AA, Peters CJ (1999) Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J Infect Dis 179(Suppl 1):S188–S191

    CAS  PubMed  Google Scholar 

  • Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ (2005) Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 79:10442–10450

    CAS  PubMed  Google Scholar 

  • Walker DH, Camenga DL, Whitfield S, Murphy FA (1977) Anticonvulsant prolongation of survival in adult murine lymphocytic choriomeningitis. II. Ultrastructural observations of pathogenetic events. J Neuropathol Exp Neurol 36:21–40

    CAS  PubMed  Google Scholar 

  • Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE (2006a) Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 74:645–653

    CAS  PubMed  Google Scholar 

  • Wassmer SC, de Souza JB, Frere C, Candal FJ, Juhan-Vague I, Grau GE (2006b) TGF-beta1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol 176:1180–1184

    CAS  PubMed  Google Scholar 

  • Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281:35593–35597

    CAS  PubMed  Google Scholar 

  • Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N, Burstein D, Doukas J, Soll R, Losordo D, Cheresh D (2004) Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113:885–894

    CAS  PubMed  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    CAS  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592

    CAS  PubMed  Google Scholar 

  • Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, Robenek H, Tryggvason K, Song J, Korpos E, Loser K, Beissert S, Georges-Labouesse E, Sorokin LM (2009) Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med 15:519–527

    CAS  PubMed  Google Scholar 

  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    CAS  PubMed  Google Scholar 

  • Yang Z, Delgado R, Xu L, Todd RF, Nabel EG, Sanchez A, Nabel GJ (1998) Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279:1034–1037

    CAS  PubMed  Google Scholar 

  • Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037

    CAS  PubMed  Google Scholar 

  • Zajac AJ, Dye JM, Quinn DG (2003) Control of lymphocytic choriomeningitis virus infection in granzyme B deficient mice. Virology 305:1–9

    CAS  PubMed  Google Scholar 

  • Zampieri CA, Sullivan NJ, Nabel GJ (2007) Immunopathology of highly virulent pathogens: insights from Ebola virus. Nat Immunol 8:1159–1164

    CAS  PubMed  Google Scholar 

  • Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123

    CAS  PubMed  Google Scholar 

  • Zheng L, Calenoff MA, Dal Canto MC (2001) Astrocytes, not microglia, are the main cells responsible for viral persistence in Theiler’s murine encephalomyelitis virus infection leading to demyelination. J Neuroimmunol 118:256–267

    CAS  PubMed  Google Scholar 

  • Zurbriggen A, Fujinami RS (1988) Theiler’s virus infection in nude mice: viral RNA in vascular endothelial cells. J Virol 62:3589–3596

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health intramural program. S.S.K. is supported by a National Research Service Award (NS061447-01). We would like to thank Drs. Jiyun Kim and Michael Dustin at New York University for providing the images shown in Figs. 1b–d and 2b–c as well as Dr. Bernd Zinselmeyer for the image shown in Fig. 1a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian B. McGavern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.S., McGavern, D.B. Microbial Induction of Vascular Pathology in the CNS. J Neuroimmune Pharmacol 5, 370–386 (2010). https://doi.org/10.1007/s11481-010-9208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9208-9

Keyword

Navigation