Skip to main content

Infections and Inflammation in the Brain and Spinal Cord: A Dangerous Liaison

  • Chapter
  • First Online:
Inflammation: the Common Link in Brain Pathologies

Abstract

Unicellular microorganisms developed on Earth approximately 3–4 billion years ago, and since the evolution of modern man (Homo sapiens) about 200,000 years ago, there been a close interaction between them which has not always been beneficial for the host. Diseases resulting from microbial infections have for long been a bane of human society and with the discovery of viruses and prions, the array of infectious agents has further widened. An infectious agent may target either specific or multiple cell types, organs, or organ systems. As a response to the infections, the body ‘fights back’ with its own set of defenders, i.e., the immune system. In this chapter, we focus on the various types of infections that can affect our central nervous system (CNS), arguably the most complicated organization of matter that we have the knowledge about, and the immune responses against them. The CNS had been long considered to be ‘immune-privileged’ due to its apparent separation from the rest of the body by specialized barriers. However, these barriers have been found to be dynamic in nature, regulating the flow of material across them. Also, the cells in the brain are themselves equipped with various mechanisms to detect the presence of the infectious agents and respond accordingly to contain or neutralize the threat posed by them. The response mechanism often results in a condition termed as inflammation, which in itself is a complex process involving multiple mediators. Inflammation is often referred as ‘double-edged’ sword as, if un-controlled, it results in severe damage to the host itself. In a non-regenerating organ system such as the CNS this has detrimental ramifications that are commonly termed as neurodegeneration. Thus, in this chapter we have strived to provide the reader not only on the different types of pathogens infecting human CNS but also the immune response associated with them. More specifically, we have tried to provide information about how these pathogens are detected/recognized by cells of the CNS, how the cells respond following the detection, and how is the response regulated (if there is any regulation at all). Even though we have separated the response against bacteria, viruses, fungi, parasites, and prions in different sections, the readers will no doubt notice a certain degree of overlap in the mechanism of response of these different types of pathogens indicating the plasticity of the immune system. However, there is some uniqueness associated with each pathogen infection which makes the immune systems task even more difficult. In this chapter, we have strived to incorporate multitude of information in a concise manner; however, we do stress that this is by no means all-encompassing. Hence, the readers are encouraged to follow-up any particular point of interest from the cited publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S, Yamamoto Y, Yamamoto H, Iino S, Taniguchi N, Maruyama I (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Investig 115:1267–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abreu-Silva AL, Calabrese KS, Tedesco RC, Mortara RA, Goncalves da Costa SC (2003) Central nervous system involvement in experimental infection with Leishmania (Leishmania) amazonensis. Am J Trop Med Hyg 68:661–665

    CAS  PubMed  Google Scholar 

  • Adams JH, Haller L, Boa FY, Doua F, Dago A, Konian K (1986) Human African trypanosomiasis (T.b. gambiense): a study of 16 fatal cases of sleeping sickness with some observations on acute reactive arsenical encephalopathy. Neuropathol Appl Neurobiol 12:81–94

    Article  CAS  PubMed  Google Scholar 

  • Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460:98–102

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Almenoff PL, Johnson A, Lesser M, Mattman LH (1996) Growth of acid fast L forms from the blood of patients with sarcoidosis. Thorax 51:530–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Tawfiq JA, Boukhamseen A (2011) Cerebral phaeohyphomycosis due to Rhinocladiella mackenziei (formerly Ramichloridium mackenziei): case presentation and literature review. J Infect Pub Health 4:96–102

    Article  Google Scholar 

  • Anneken K, Fischera M, Evers S, Kloska S, Husstedt IW (2006) Recurrent vacuolar myelopathy in HIV infection. J Infect 52:e181–e183

    Article  PubMed  Google Scholar 

  • Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL (1996) Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184:557–567

    Article  CAS  PubMed  Google Scholar 

  • Antinori S (2013) New insights into HIV/AIDS-associated cryptococcosis. ISRN AIDS 2013:471363

    Article  PubMed  PubMed Central  Google Scholar 

  • Arisoy ES, Arisoy AE, Dunne WM Jr (1994) Clinical significance of fungi isolated from cerebrospinal fluid in children. Pediatr Infect Dis J 13:128–133

    Article  CAS  PubMed  Google Scholar 

  • Arlaud GJ, Gaboriaud C, Thielens NM, Budayova-Spano M, Rossi V, Fontecilla-Camps JC (2002) Structural biology of the C1 complex of complement unveils the mechanisms of its activation and proteolytic activity. Mol Immunol 39:383–394

    Article  CAS  PubMed  Google Scholar 

  • Ashman RB, Bolitho EM, Fulurija A (1995) Cytokine mRNA in brain tissue from mice that show strain-dependent differences in the severity of lesions induced by systemic infection with Candida albicans yeast. J Infect Dis 172:823–830

    Article  CAS  PubMed  Google Scholar 

  • Atmaca HT, Kul O, Karakus E, Terzi OS, Canpolat S, Anteplioglu T (2014) Astrocytes, microglia/macrophages, and neurons expressing Toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection. Neuroscience 269:184–191

    Article  CAS  PubMed  Google Scholar 

  • Baddley JW, Salzman D, Pappas PG (2002) Fungal brain abscess in transplant recipients: epidemiologic, microbiologic, and clinical features. Clin Transplant 16:419–424

    Article  PubMed  Google Scholar 

  • Bakardjiev A, Azimi PH, Ashouri N, Ascher DP, Janner D, Schuster FL, Visvesvara GS, Glaser C (2003) Amebic encephalitis caused by Balamuthia mandrillaris: report of four cases. Pediatr Infect Dis J 22:447–453

    PubMed  Google Scholar 

  • Baker DG, Woods TA, Butchi NB, Morgan TM, Taylor RT, Sunyakumthorn P, Mukherjee P, Lubick KJ, Best SM, Peterson KE (2013) Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection. J Gen Virol 94:336–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bale JF Jr (2014) Measles, mumps, rubella, and human parvovirus B19 infections and neurologic disease. Handbook of clinical neurology 121:1345–1353

    Article  PubMed  Google Scholar 

  • Banuelos AF, Williams PL, Johnson RH, Bibi S, Fredricks DN, Gilroy SA, Bhatti SU, Aguet J, Stevens DA (1996) Central nervous system abscesses due to Coccidioides species. Clin Infect Dis 22:240–250

    Article  CAS  PubMed  Google Scholar 

  • Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT, Csako G, Patterson AP, Eggerman TL (2008) Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol 181:7147–7156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25:1–54

    Article  CAS  PubMed  Google Scholar 

  • Beaver PC (1959) Visceral and cutaneous larva migrans. Public Health Rep 74:328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bencsik A, Lezmi S, Hunsmann G, Baron T (2001) Close vicinity of PrP expressing cells (FDC) with noradrenergic fibers in healthy sheep spleen. Dev Immunol 8:235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetto N, Auriault C (2002a) Complex network of cytokines activating murine microglial cell activity against Acanthamoeba castellani. Eur Cytokine Netw 13:351–357

    CAS  PubMed  Google Scholar 

  • Benedetto N, Auriault C (2002b) Prolactin-cytokine network in the defence against Acanthamoeba castellanii in murine microglia [corrected]. Eur Cytokine Netw 13:447–455

    CAS  PubMed  Google Scholar 

  • Benedetto N, Rossano F, Gorga F, Folgore A, Rao M, Romano Carratelli C (2003) Defense mechanisms of IFN-γ and LPS-primed murine microglia against Acanthamoeba castellanii infection. Int Immunopharmacol 3:825–834

    Article  CAS  PubMed  Google Scholar 

  • Berger JR (1994) Tuberculous meningitis. Curr Opin Neurol 7:191–200

    Article  CAS  PubMed  Google Scholar 

  • Bergmann CC, Lane TE, Stohlman SA (2006) Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol 4:121–132

    Article  CAS  PubMed  Google Scholar 

  • Bielefeldt-Ohmann H, Smirnova NP, Tolnay AE, Webb BT, Antoniazzi AQ, van Campen H, Hansen TR (2012) Neuro-invasion by a ‘Trojan Horse’ strategy and vasculopathy during intrauterine flavivirus infection. Int J Exp Pathol 93:24–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Blasi E, Barluzzi R, Mazzolla R, Pitzurra L, Puliti M, Saleppico S, Bistoni F (1995) Biomolecular events involved in anticryptococcal resistance in the brain. Infect Immun 63:1218–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blom AM, Hallstrom T, Riesbeck K (2009) Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol 46:2808–2817

    Article  CAS  PubMed  Google Scholar 

  • Bobadilla K, Sada E, Jaime ME, Gonzalez Y, Ramachandra L, Rojas RE, Pedraza-Sanchez S, Michalak C, Gonzalez-Noriega A, Torres M (2013) Human phagosome processing of Mycobacterium tuberculosis antigens is modulated by interferon-γ and interleukin-10. Immunology 138:34–46

    Article  CAS  PubMed  Google Scholar 

  • Bockenstedt LK, Wormser GP (2014) Review: unraveling Lyme disease. Arthritis Rheumatol (Hoboken, NJ) 66:2313–2323

    Article  CAS  Google Scholar 

  • Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Boothpur R, Brennan DC (2010) Human polyoma viruses and disease with emphasis on clinical BK and JC. J Clin Virol 47:306–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford BM, Mabbott NA (2012) Prion disease and the Innate immune system. Viruses 4(12):3389–3419. doi:10.3390/v4123389

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, Tuomanen EI, Weber JR (2002) Pneumococcal pneumolysin and H2O2 mediate brain cell apoptosis during meningitis. J Clin Investig 109:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD (2002) Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 161:1669–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11:130–135

    Article  CAS  PubMed  Google Scholar 

  • Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, Morrison WI, Bruce ME (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5:1308–1312

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Science translational medicine 4:165rv113

    Google Scholar 

  • Bruce ME, Brown KL, Mabbott NA, Farquhar CF, Jeffrey M (2000) Follicular dendritic cells in TSE pathogenesis. Immunol Today 21:442–446

    Article  CAS  PubMed  Google Scholar 

  • Bruschi F, Korenaga M, Watanabe N (2008) Eosinophils and Trichinella infection: toxic for the parasite and the host? Trends Parasitol 24:462–467

    Article  CAS  PubMed  Google Scholar 

  • Buchanan R, Bonthius DJ (2012) Measles virus and associated central nervous system sequelae. Semin Pediatr Neurol 19:107–114

    Article  PubMed  Google Scholar 

  • Buchanan KL, Doyle HA (2000) Requirement for CD4(+) T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. Infect Immun 68:456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchs S, Pfister P (1983) Candida meningitis. Course, prognosis and mortality before and after introduction of the new antimycotics. Mykosen 26:73–81

    Article  CAS  PubMed  Google Scholar 

  • Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Cai MS, Li ML, Zheng CF (2012) Herpesviral infection and Toll-like receptor 2. Protein Cell 3:590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantwell AR Jr (1982) Histologic observations of variably acid-fast pleomorphic bacteria in systemic sarcoidosis: a report of 3 cases. Growth 46:113–125

    PubMed  Google Scholar 

  • Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC (2012) miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 135:73–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carod Artal FJ, Vargas AP, Horan TA, Marinho PB, Coelho Costa PH (2004) Schistosoma mansoni myelopathy: clinical and pathologic findings. Neurology 63:388–391

    Article  CAS  PubMed  Google Scholar 

  • Carruthers VB, Suzuki Y (2007) Effects of Toxoplasma gondii infection on the brain. Schizophr Bull 33:745–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Casado JL, Quereda C, Oliva J, Navas E, Moreno A, Pintado V, Cobo J, Corral I (1997) Candidal meningitis in HIV-infected patients: analysis of 14 cases. Clin Infect Dis 25:673–676

    Article  CAS  PubMed  Google Scholar 

  • Cermeno JR, Hernandez I, El Yasin H, Tinedo R, Sanchez R, Perez G, Gravano R, Ruiz A (2006) Meningoencephalitis by Naegleria fowleri: epidemiological study in Anzoategui state, Venezuela. Rev Soc Bras Med Trop 39:264–268

    Article  PubMed  Google Scholar 

  • Chadwick DW, Hartley E, Mackinnon DM (1980) Meningitis caused by Candida tropicalis. Arch Neurol 37:175–176

    Article  CAS  PubMed  Google Scholar 

  • Chai Q, He WQ, Zhou M, Lu H, Fu ZF (2014) Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 88:4698–4710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chai Q, She R, Huang Y, Fu ZF (2015) Expression of neuronal CXCL10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability. J Virol 89:870–876

    Article  PubMed  CAS  Google Scholar 

  • Chao CC, Anderson WR, Hu S, Gekker G, Martella A, Peterson PK (1993) Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism. Clin Immunol Immunopathol 67:178–183

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri JD (2000) Blood brain barrier and infection. Med Sci Monit 6:1213–1222

    CAS  PubMed  Google Scholar 

  • Chauhan VS, Sterka DG Jr, Furr SR, Young AB, Marriott I (2009) NOD2 plays an important role in the inflammatory responses of microglia and astrocytes to bacterial CNS pathogens. Glia 57:414–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR (2005) Differential responses of human brain cells to West Nile virus infection. J Neurovirol 11:512–524

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Lu PL, Lee KM, Chang TC, Lai CC, Chang K, Lin WR, Lin CY, Chen YH (2013) Acute meningitis caused by Cladosporium sphaerospermum. Am J Med Sci 346:523–525

    Article  PubMed  Google Scholar 

  • Chen CJ, Ou YC, Li JR, Chang CY, Pan HC, Lai CY, Liao SL, Raung SL, Chang CJ (2014) Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier. J Virol 88:1150–1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cherian A, Thomas SV (2011) Central nervous system tuberculosis. Afr Health Sci 11:116–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung TW, Teich SA (1999) Cytomegalovirus infection in patients with HIV infection. Mt Sinai J Med 66:113–124

    CAS  PubMed  Google Scholar 

  • Chimelli L (2011) A morphological approach to the diagnosis of protozoal infections of the central nervous system. Pathol Res Int 2011:290853

    Article  Google Scholar 

  • Chin AC, Fournier B, Peatman EJ, Reaves TA, Lee WY, Parkos CA (2009) CD47 and TLR-2 cross-talk regulates neutrophil transmigration. J Immunol 183:5957–5963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhary A et al (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect 20(Suppl 3):47–75

    Article  CAS  PubMed  Google Scholar 

  • Clark IA, Alleva LM (2009) Is human malarial coma caused, or merely deepened, by sequestration? Trends Parasitol 25:314–318

    Article  PubMed  Google Scholar 

  • Cole JN, Barnett TC, Nizet V, Walker MJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9:724–736

    Article  CAS  PubMed  Google Scholar 

  • Conant K, Lim ST, Randall B, Maguire-Zeiss KA (2012) Matrix metalloproteinase dependent cleavage of cell adhesion molecules in the pathogenesis of CNS dysfunction with HIV and methamphetamine. Curr HIV Res 10:384–391

    Article  CAS  PubMed  Google Scholar 

  • Corcoran C, Rebe K, van der Plas H, Myer L, Hardie DR (2008) The predictive value of cerebrospinal fluid Epstein-Barr viral load as a marker of primary central nervous system lymphoma in HIV-infected persons. J Clin Virol 42:433–436

    Article  PubMed  Google Scholar 

  • Couch JR, Romyg DA (1977) Histoplasma meningitis with common variable hypogammaglobulinemia. Neurologia, neurocirugia, psiquiatria 18:403–412

    CAS  PubMed  Google Scholar 

  • Cramer JP, Nussler AK, Ehrhardt S, Burkhardt J, Otchwemah RN, Zanger P, Dietz E, Gellert S, Bienzle U, Mockenhaupt FP (2005) Age-dependent effect of plasma nitric oxide on parasite density in Ghanaian children with severe malaria. Trop Med Int Health 10:672–680

    Article  CAS  PubMed  Google Scholar 

  • Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    Article  CAS  PubMed  Google Scholar 

  • Cree BA (2014) Acute inflammatory myelopathies. Handbook of clinical neurology 122:613–667

    Article  PubMed  Google Scholar 

  • Daffis S, Samuel MA, Suthar MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantas AM, Yamane R, Camara AG (1990) South American blastomycosis: ophthalmic and oculomotor nerve lesions. Am J Trop Med Hyg 43:386–388

    CAS  PubMed  Google Scholar 

  • Das Sarma J (2014) Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol 20:122–136

    Article  CAS  PubMed  Google Scholar 

  • Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Almeida SM, Rebelatto CL, Queiroz-Telles F, Werneck LC (2005) Major histocompatibility complex and central nervous system involvement by paracoccidioidomycosis. J Infect 51:140–143

    Article  PubMed  Google Scholar 

  • de Vries HE, Hendriks JJ, Honing H, De Lavalette CR, van der Pol SM, Hooijberg E, Dijkstra CD, van den Berg TK (2002) Signal-regulatory protein α-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. J Immunol 168:5832–5839

    Article  PubMed  Google Scholar 

  • del Pozo MM, Bermejo F, Molina JA, de la Fuente EC, Martinez-Martin P, Benito-Leon J (1998) Chronic neutrophilic meningitis caused by Candida albicans. Neurologia (Barcelona, Spain) 13:362–366

    Google Scholar 

  • Delhaye S, Paul S, Blakqori G, Minet M, Weber F, Staeheli P, Michiels T (2006) Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci USA 103:7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbie M, Crawley J, Waruiru C, Marsh K, Surtees R (2000) Cerebrospinal fluid studies in children with cerebral malaria: an excitotoxic mechanism? Am J Trop Med Hyg 62:284–290

    CAS  PubMed  Google Scholar 

  • Dokmeci O, Forshay B, Scholand SJ (2013) Worms on the brain: fatal meningoencephalitis from disseminated strongyloides infection. Conn Med 77:31–33

    PubMed  Google Scholar 

  • du Bois RM, Goh N, McGrath D, Cullinan P (2003) Is there a role for microorganisms in the pathogenesis of sarcoidosis? J Intern Med 253:4–17

    Article  PubMed  Google Scholar 

  • Ebner F, Brandt C, Thiele P, Richter D, Schliesser U, Siffrin V, Schueler J, Stubbe T, Ellinghaus A, Meisel C, Sawitzki B, Nitsch R (2013) Microglial activation milieu controls regulatory T cell responses. J Immunol 191:5594–5602

    Article  CAS  PubMed  Google Scholar 

  • Eisen DP, Minchinton RM (2003) Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis 37:1496–1505

    Article  CAS  PubMed  Google Scholar 

  • Elsheikha HM, Khan NA (2010) Protozoa traversal of the blood-brain barrier to invade the central nervous system. FEMS Microbiol Rev 34:532–553

    Article  CAS  PubMed  Google Scholar 

  • Elward K, Gasque P (2003) “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol Immunol 40:85–94

    Article  CAS  PubMed  Google Scholar 

  • Faix RG (1983) Candida parapsilosis meningitis in a premature infant. Pediatr Infect Dis 2:462–464

    Article  CAS  PubMed  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  • Ferrari TC, Moreira PR (2011) Neuroschistosomiasis: clinical symptoms and pathogenesis. The Lancet 10:853–864

    Article  PubMed  Google Scholar 

  • Fischer HG, Nitzgen B, Reichmann G, Hadding U (1997a) Cytokine responses induced by Toxoplasma gondii in astrocytes and microglial cells. Eur J Immunol 27:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Fischer HG, Nitzgen B, Reichmann G, Gross U, Hadding U (1997b) Host cells of Toxoplasma gondii encystation in infected primary culture from mouse brain. Parasitol Res 83:637–641

    Article  CAS  PubMed  Google Scholar 

  • Fischer HG, Bonifas U, Reichmann G (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164:4826–4834

    Article  CAS  PubMed  Google Scholar 

  • Flo TH, Halaas O, Lien E, Ryan L, Teti G, Golenbock DT, Sundan A, Espevik T (2000) Human toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J Immunol 164:2064–2069

    Article  CAS  PubMed  Google Scholar 

  • Ford MJ, Burton LJ, Li H, Graham CH, Frobert Y, Grassi J, Hall SM, Morris RJ (2002) A marked disparity between the expression of prion protein and its message by neurones of the CNS. Neuroscience 111:533–551

    Article  CAS  PubMed  Google Scholar 

  • Forrellad MA, Klepp LA, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4:3–66

    Google Scholar 

  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Fu YR, Liu XJ, Li XJ, Shen ZZ, Yang B, Wu CC, Li JF, Miao LF, Ye HQ, Qiao GH, Rayner S, Chavanas S, Davrinche C, Britt WJ, Tang Q, McVoy M, Mocarski E, Luo MH (2015) MicroRNA miR-21 attenuates human cytomegalovirus replication in neural cells by targeting Cdc25a. J Virol 89:1070–1082

    Article  PubMed  Google Scholar 

  • Galioto AM, Hess JA, Nolan TJ, Schad GA, Lee JJ, Abraham D (2006) Role of eosinophils and neutrophils in innate and adaptive protective immunity to larval strongyloides stercoralis in mice. Infect Immun 74:5730–5738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia HH, Gonzalez AE, Evans CA, Gilman RH (2003) Taenia solium cysticercosis. Lancet 362:547–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner JA, LaVail JH (1999) Differential anterograde transport of HSV type 1 viral strains in the murine optic pathway. J Neurovirol 5:140–150

    Article  CAS  PubMed  Google Scholar 

  • Gasque P (2004) Complement: a unique innate immune sensor for danger signals. Mol Immunol 41:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Gasque P, Singhrao SK, Neal JW, Wang P, Sayah S, Fontaine M, Morgan BP (1998) The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J Immunol 160:3543–3554

    CAS  PubMed  Google Scholar 

  • Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479

    Article  CAS  PubMed  Google Scholar 

  • Gerber J, Nau R (2010) Mechanisms of injury in bacterial meningitis. Curr Opin Neurol 23:312–318

    Article  PubMed  Google Scholar 

  • Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A (2007) Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55:483–496

    Article  PubMed  Google Scholar 

  • Gilsdorf JR, Marrs CF, Foxman B (2004) Haemophilus influenzae: genetic variability and natural selection to identify virulence factors. Infect Immun 72:2457–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girmenia C, Micozzi A, Venditti M, Meloni G, Iori AP, Bastianello S, Martino P (1991) Fluconazole treatment of Blastoschizomyces capitatus meningitis in an allogeneic bone marrow recipient. Eur J Clin Microbiol Infect Dis 10:752–756

    Article  CAS  PubMed  Google Scholar 

  • Gluska S, Zahavi EE, Chein M, Gradus T, Bauer A, Finke S, Perlson E (2014) Rabies Virus Hijacks and accelerates the p75NTR retrograde axonal transport machinery. PLoS Pathog 10:e1004348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonyea EF (1978) The spectrum of primary blastomycotic meningitis: a review of central nervous system blastomycosis. Annals of neurology 3:26–39

    Article  CAS  PubMed  Google Scholar 

  • Graeff-Teixeira C, da Silva AC, Yoshimura K (2009) Update on eosinophilic meningoencephalitis and its clinical relevance. Clin Microbiol Rev 22:322–348, Table of Contents

    Google Scholar 

  • Gralinski LE, Ashley SL, Dixon SD, Spindler KR (2009) Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol 83:9398–9410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths MR, Gasque P, Neal JW (2009) The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J Neuropathol Exp Neurol 68:217–226

    Article  CAS  PubMed  Google Scholar 

  • Guedes J, Cardoso AL, Pedroso de Lima MC (2013) Involvement of microRNA in microglia-mediated immune response. Clin Dev Immunol 2013:186872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Song Z, Li M, Wu Q, Wang D, Feng H, Bernard P, Daugherty A, Huang B, Li XA (2009) Scavenger receptor BI protects against septic death through its role in modulating inflammatory response. J Biol Chem 284:19826–19834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddon DJ, Hughes MR, Antignano F, Westaway D, Cashman NR, McNagny KM (2009) Prion protein expression and release by mast cells after activation. J Infect Dis 200:827–831

    Article  CAS  PubMed  Google Scholar 

  • Halonen SK, Chiu F, Weiss LM (1998) Effect of cytokines on growth of Toxoplasma gondii in murine astrocytes. Infect Immun 66:4989–4993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han YW, Choi JY, Uyangaa E, Kim SB, Kim JH, Kim BS, Kim K, Eo SK (2014) Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog 10:e1004319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 121:367–387

    Article  CAS  Google Scholar 

  • Harley WB, Lomis M, Haas DW (1994) Marked polymorphonuclear pleocytosis due to blastomycotic meningitis: case report and review. Clin Infect Dis 18:816–818

    Article  CAS  PubMed  Google Scholar 

  • Hasbun R (2014) Cerebrospinal fluids in central nervous system infections, in Scheld WM, Whitley RJ, Marra, CM eds. Infections of the central nervous system 4th edition:11

    Google Scholar 

  • Hause L, Al-Salleeh FM, Petro TM (2007) Expression of IL-27 p28 by Theiler’s virus-infected macrophages depends on TLR3 and TLR7 activation of JNK-MAP-kinases. Antiviral Res 76:159–167

    Article  CAS  PubMed  Google Scholar 

  • Hawley DA, Schaefer JF, Schulz DM, Muller J (1983) Cytomegalovirus encephalitis in acquired immunodeficiency syndrome. Am J Clin Pathol 80:874–877

    Article  CAS  PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Heney C, Song E, Kellen A, Raal F, Miller SD, Davis V (1989) Cerebral phaeohyphomycosis caused by Xylohypha bantiana. Eur J Clin Microbiol Infect Dis 8:984–988

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez JC, Stevenson M, Latz E, Urcuqui-Inchima S (2012) HIV type 1 infection up-regulates TLR2 and TLR4 expression and function in vivo and in vitro. AIDS Res Hum Retroviruses 28:1313–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernangomez M, Carrillo-Salinas FJ, Mecha M, Correa F, Mestre L, Loria F, Feliu A, Docagne F, Guaza C (2014) Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. Curr Pharm Des 20:4707–4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoarau JJ, Krejbich-Trotot P, Jaffar-Bandjee MC, Das T, Thon-Hon GV, Kumar S, Neal JW, Gasque P (2011) Activation and control of CNS innate immune responses in health and diseases: a balancing act finely tuned by neuroimmune regulators (NIReg). CNS Neurol Disord: Drug Targets 10:25–43

    Article  CAS  Google Scholar 

  • Hogan SP (2007) Recent advances in eosinophil biology. Int Arch Allergy Immunol 143(Suppl 1):3–14

    Article  PubMed  Google Scholar 

  • Hornbeek H, Ackerman BH, Reigart CL, Stair-Buchmann M, Guilday RE, Patton ML, Haith LR Jr (2012) Pseudallescheria boydii infection of the brain. Surgical infections 13:179–180

    Article  PubMed  Google Scholar 

  • Hou YJ, Banerjee R, Thomas B, Nathan C, Garcia-Sastre A, Ding A, Uccellini MB (2013) SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection. J Immunol 191:875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SN, Harris LS (1963) Acute disseminated penicilliosis: report of a case and review of pertinent literature. Am J Clin Pathol 39:167–174

    Article  CAS  PubMed  Google Scholar 

  • Hunt NH, Grau GE (2003) Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 24:491–499

    Article  CAS  PubMed  Google Scholar 

  • Hunter CA, Gow JW, Kennedy PG, Jennings FW, Murray M (1991) Immunopathology of experimental African sleeping sickness: detection of cytokine mRNA in the brains of Trypanosoma brucei brucei-infected mice. Infect Immun 59:4636–4640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter CA, Jennings FW, Kennedy PG, Murray M (1992) Astrocyte activation correlates with cytokine production in central nervous system of Trypanosoma brucei brucei-infected mice. Lab Invest J Tech Methods Pathol 67:635–642

    CAS  Google Scholar 

  • Huttova M, Hartmanova I, Kralinsky K, Filka J, Uher J, Kurak J, Krizan S, Krcmery V Jr (1998a) Candida fungemia in neonates treated with fluconazole: report of forty cases, including eight with meningitis. Pediatr Infect Dis J 17:1012–1015

    Article  CAS  PubMed  Google Scholar 

  • Huttova M, Kralinsky K, Horn J, Marinova I, Iligova K, Fric J, Spanik S, Filka J, Uher J, Kurak J, Krcmery V Jr (1998b) Prospective study of nosocomial fungal meningitis in children–report of 10 cases. Scand J Infect Dis 30:485–487

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama T, Isumi H, Yoshitomi T, Nishikawa M, Matsubara T, Furukawa S (2002) NF-κB activation in cerebrospinal fluid cells from patients with meningitis. Neurol Res 24:709–712

    Article  CAS  PubMed  Google Scholar 

  • Idro R, Marsh K, John CC, Newton CR (2010) Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res 68:267–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Jadhav VS, Krause KH, Singh SK (2014) HIV-1 Tat C modulates NOX2 and NOX4 expressions through miR-17 in a human microglial cell line. J Neurochem 131:803–815

    Article  CAS  PubMed  Google Scholar 

  • Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR (2006) Mycobacterium tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J Infect Dis 193:1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Jamjoom A, al-Abedeen Jamjoom Z, al-Hedaithy S, Jamali A, Naim Ur R, Malabarey T (1992) Ventriculitis and hydrocephalus caused by Candida albicans successfully treated by antimycotic therapy and cerebrospinal fluid shunting. Br J Neurosurg 6:501–504

    Google Scholar 

  • Janot L, Secher T, Torres D, Maillet I, Pfeilschifter J, Quesniaux VF, Landmann R, Ryffel B, Erard F (2008) CD14 works with toll-like receptor 2 to contribute to recognition and control of Listeria monocytogenes infection. J Infect Dis 198:115–124

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA, Setinek U, Drlicek M, Bohm G, Steurer A, Lintner F (2000) Neuropathology and general autopsy findings in AIDS during the last 15 years. Acta Neuropathol 100:213–220

    Article  CAS  PubMed  Google Scholar 

  • John CC, Opika-Opoka R, Byarugaba J, Idro R, Boivin MJ (2006) Low levels of RANTES are associated with mortality in children with cerebral malaria. J Infect Dis 194:837–845

    Article  PubMed  Google Scholar 

  • John CC, Panoskaltsis-Mortari A, Opoka RO, Park GS, Orchard PJ, Jurek AM, Idro R, Byarugaba J, Boivin MJ (2008) Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. Am J Trop Med Hyg 78:198–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson HL, Jin F, Pirko I, Johnson AJ (2014) Theiler’s murine encephalomyelitis virus as an experimental model system to study the mechanism of blood-brain barrier disruption. J Neurovirol 20:107–112

    Article  PubMed  Google Scholar 

  • Johnston LJ, Halliday GM, King NJ (1996) Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol 70:4761–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones TC, Bienz KA, Erb P (1986) In vitro cultivation of Toxoplasma gondii cysts in astrocytes in the presence of gamma interferon. Infect Immun 51:147–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson S, Musher DM, Chapman A, Goree A, Lawrence EC (1985) Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. J Infect Dis 152:4–13

    Article  CAS  PubMed  Google Scholar 

  • Jung NY, Kim E (2014) Cerebral phaeohyphomycosis: a rare cause of brain abscess. J Korean Neurosurg Soc 56:444–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanmogne GD, Primeaux C, Grammas P (2005) HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: implications for the pathogenesis of HIV-associated dementia. J Neuropathol Exp Neurol 64:498–505

    Article  CAS  PubMed  Google Scholar 

  • Kantarcioglu AS, Apaydin H, Yucel A, de Hoog GS, Samson RA, Vural M, Ozekmekci S (2004) Central nervous system infection due to Penicillium chrysogenum. Mycoses 47:242–248

    Article  CAS  PubMed  Google Scholar 

  • Kastenbauer S, Koedel U, Weih F, Ziegler-Heitbrock L, Pfister HW (2004) Protective role of NF-κB1 (p50) in experimental pneumococcal meningitis. Eur J Pharmacol 498:315–318

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  CAS  PubMed  Google Scholar 

  • Kaushik DK, Gupta M, Das S, Basu A (2010) Kruppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflamm 7:68

    Article  CAS  Google Scholar 

  • Kaushik DK, Mukhopadhyay R, Kumawat KL, Gupta M, Basu A (2012) Therapeutic targeting of Kruppel-like factor 4 abrogates microglial activation. J Neuroinflamm 9:57

    Article  CAS  Google Scholar 

  • Kaushik DK, Thounaojam MC, Kumawat KL, Gupta M, Basu A (2013) Interleukin-1β orchestrates underlying inflammatory responses in microglia via Kruppel-like factor 4. J Neurochem 127:233–244

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  CAS  PubMed  Google Scholar 

  • Kennedy PG (2004) Human African trypanosomiasis of the CNS: current issues and challenges. J Clin Investig 113:496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kershaw P, Freeman R, Templeton D, DeGirolami PC, DeGirolami U, Tarsy D, Hoffmann S, Eliopoulos G, Karchmer AW (1990) Pseudallescheria boydii infection of the central nervous system. Arch Neurol 47:468–472

    Article  CAS  PubMed  Google Scholar 

  • Kethireddy S, Andes D (2007) CNS pharmacokinetics of antifungal agents. Expert Opin Drug Metabol Toxicol 3:573–581

    Article  CAS  Google Scholar 

  • Khan NA, Iqbal J, Siddiqui R (2012) Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells. Microb Pathog 53:269–275

    Article  CAS  PubMed  Google Scholar 

  • Khuth ST, Akaoka H, Pagenstecher A, Verlaeten O, Belin MF, Giraudon P, Bernard A (2001) Morbillivirus infection of the mouse central nervous system induces region-specific upregulation of MMPs and TIMPs correlated to inflammatory cytokine expression. J Virol 75:8268–8282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW (2014) Pattern recognition receptors and central nervous system repair. Exp Neurol 258:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS (2008) Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 6:625–634

    Article  CAS  PubMed  Google Scholar 

  • Kim WK, Corey S, Alvarez X, Williams K (2003) Monocyte/macrophage traffic in HIV and SIV encephalitis. J Leukoc Biol 74:650–656

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Zhou P, Qian L, Chuang JZ, Lee J, Li C, Iadecola C, Nathan C, Ding A (2007) MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 204:2063–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein J, Sato A (2000) The HLA system. Second of two parts. N Engl J Med 343:782–786

    Article  CAS  PubMed  Google Scholar 

  • Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM, Carroll MC, Verbeek JS, Botto M, Walport MJ, Molina H, Kalinke U, Acha-Orbea H, Aguzzi A (2001) Complement facilitates early prion pathogenesis. Nat Med 7:488–492

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Koedel U, Pfister HW (2006) Oxidative stress in pneumococcal meningitis: a future target for adjunctive therapy? Prog Neurobiol 80:269–280

    Article  CAS  PubMed  Google Scholar 

  • Knowles DM (2003) Etiology and pathogenesis of AIDS-related non-Hodgkin’s lymphoma. Hematol Oncol Clin North Am 17:785–820

    Article  PubMed  Google Scholar 

  • Koedel U, Bayerlein I, Paul R, Sporer B, Pfister HW (2000) Pharmacologic interference with NF-κB activation attenuates central nervous system complications in experimental Pneumococcal meningitis. J Infect Dis 182:1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Kohli S, Farooq O, Jani RB, Wolfe GI (2015) Cerebral paragonimiasis: an unusual manifestation of a rare parasitic infection. Pediatr Neurol 52:366–369

    Article  PubMed  Google Scholar 

  • Koning N, Swaab DF, Hoek RM, Huitinga I (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol 68:159–167

    Article  CAS  PubMed  Google Scholar 

  • Koyuncu OO, Hogue IB, Enquist LW (2013) Virus infections in the nervous system. Cell Host Microbe 13:379–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozel TR (1993) Activation of the complement system by the capsule of Cryptococcus neoformans. Curr Top Med Mycol 5:1–26

    CAS  PubMed  Google Scholar 

  • Kravitz GR, Davies SF, Eckman MR, Sarosi GA (1981) Chronic blastomycotic meningitis. Am J Med 71:501–505

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K, Nygard M, Bertini G, Bentivoglio M (2010) African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions. Prog Neurobiol 91:152–171

    Article  CAS  PubMed  Google Scholar 

  • Kristensson K, Masocha W, Bentivoglio M (2013) Mechanisms of CNS invasion and damage by parasites. Handbook Clin Neurol 114:11–22

    Article  Google Scholar 

  • Kuberski T (1979) Eosinophils in the cerebrospinal fluid. Ann Intern Med 91:70–75

    Article  CAS  PubMed  Google Scholar 

  • Kuberski T (1981) Eosinophils in cerebrospinal fluid: criteria for eosinophilic meningitis. Hawaii Med J 40:97–98

    CAS  PubMed  Google Scholar 

  • Kujala P, Raymond CR, Romeijn M, Godsave SF, van Kasteren SI, Wille H, Prusiner SB, Mabbott NA, Peters PJ (2011) Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog 7:e1002449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix S, Feinstein D, Rivest S (1998) The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol (Zurich, Switzerland) 8:625–640

    Google Scholar 

  • Lafay F, Coulon P, Astic L, Saucier D, Riche D, Holley A, Flamand A (1991) Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation. Virology 183:320–330

    Article  CAS  PubMed  Google Scholar 

  • Laflamme N, Soucy G, Rivest S (2001) Circulating cell wall components derived from gram-negative, not gram-positive, bacteria cause a profound induction of the gene-encoding Toll-like receptor 2 in the CNS. J Neurochem 79:648–657

    Article  CAS  PubMed  Google Scholar 

  • Lamb TJ, Brown DE, Potocnik AJ, Langhorne J (2006) Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med 8:1–22

    Article  PubMed  Google Scholar 

  • Lambert C, Desbarats J, Arbour N, Hall JA, Olivier A, Bar-Or A, Antel JP (2008) Dendritic cell differentiation signals induce anti-inflammatory properties in human adult microglia. J Immunol 181:8288–8297

    Article  CAS  PubMed  Google Scholar 

  • Lane TE, Liu MT, Chen BP, Asensio VC, Samawi RM, Paoletti AD, Campbell IL, Kunkel SL, Fox HS, Buchmeier MJ (2000) A central role for CD4(+) T cells and RANTES in virus-induced central nervous system inflammation and demyelination. J Virol 74:1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le T, Huu Chi N, Kim Cuc NT, Manh Sieu TP, Shikuma CM, Farrar J, Day JN (2010) AIDS-associated Penicillium marneffei infection of the central nervous system. Clin Infect Dis 51:1458–1462

    Article  PubMed  PubMed Central  Google Scholar 

  • Lech M, Susanti HE, Rommele C, Grobmayr R, Gunthner R, Anders HJ (2012) Quantitative expression of C-type lectin receptors in humans and mice. Int J Mol Sci 13:10113–10131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YR, Liu MT, Lei HY, Liu CC, Wu JM, Tung YC, Lin YS, Yeh TM, Chen SH, Liu HS (2006) MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 87:3623–3630

    Article  CAS  PubMed  Google Scholar 

  • Leiguarda R, Roncoroni A, Taratuto AL, Jost L, Berthier M, Nogues M, Freilij H (1990) Acute CNS infection by Trypanosoma cruzi (Chagas’ disease) in immunosuppressed patients. Neurology 40:850–851

    Article  CAS  PubMed  Google Scholar 

  • Lejon V, Lardon J, Kenis G, Pinoges L, Legros D, Bisser S, N’Siesi X, Bosmans E, Buscher P (2002) Interleukin (IL)-6, IL-8 and IL-10 in serum and CSF of Trypanosoma brucei gambiense sleeping sickness patients before and after treatment. Trans R Soc Trop Med Hyg 96:329–333

    Article  CAS  PubMed  Google Scholar 

  • Lewis SD, Butchi NB, Khaleduzzaman M, Morgan TW, Du M, Pourciau S, Baker DG, Akira S, Peterson KE (2008) Toll-like receptor 7 is not necessary for retroviral neuropathogenesis but does contribute to virus-induced neuroinflammation. J Neurovirol 14:492–502

    Article  CAS  PubMed  Google Scholar 

  • Lezmi S, Bencsik A, Baron T (2001) CNA42 monoclonal antibody identifies FDC as PrPsc accumulating cells in the spleen of scrapie affected sheep. Vet Immunol Immunopathol 82:1–8

    Article  CAS  PubMed  Google Scholar 

  • Li J, Faber M, Dietzschold B, Hooper DC (2011) The role of toll-like receptors in the induction of immune responses during rabies virus infection. Adv Virus Res 79:115–126

    Article  PubMed  CAS  Google Scholar 

  • Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, Wang C, Cui M, Fu ZF (2015) Viral infection of the Central Nervous System and neuroinflammation precede Blood Brain Barrier disruption during Japanese Encephalitis. J Virol

    Google Scholar 

  • Licinio J, Wong ML (1997) Pathways and mechanisms for cytokine signaling of the central nervous system. J Clin Investig 100:2941–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima MA (2013) Progressive multifocal leukoencephalopathy: new concepts. Arq Neuropsiquiatr 71:699–702

    Article  PubMed  Google Scholar 

  • Liu Y, Mittal R, Solis NV, Prasadarao NV, Filler SG (2011) Mechanisms of Candida albicans trafficking to the brain. PLoS Pathog 7:e1002305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Re V III, Gluckman SJ (2003) Eosinophilic meningitis. Am J Med 114:217–223

    Google Scholar 

  • Loddick SA, Wong ML, Bongiorno PB, Gold PW, Licinio J, Rothwell NJ (1997) Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochem Biophys Res Commun 234:211–215

    Article  CAS  PubMed  Google Scholar 

  • Loeuillet C, Lemaire-Vieille C, Naquet P, Cesbron-Delauw MF, Gagnon J, Cesbron JY (2010) Prion replication in the hematopoietic compartment is not required for neuroinvasion in scrapie mouse model. PLoS ONE 5

    Google Scholar 

  • Lokensgard JR, Hu S, Sheng W, vanOijen M, Cox D, Cheeran MC, Peterson PK (2001) Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 7:208–219

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Castejon G, Corbett D, Goldrick M, Roberts IS, Brough D (2012) Inhibition of calpain blocks the phagosomal escape of Listeria monocytogenes. PLoS ONE 7:e35936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lortholary O, Improvisi L, Rayhane N, Gray F, Fitting C, Cavaillon JM, Dromer F (1999) Cytokine profiles of AIDS patients are similar to those of mice with disseminated Cryptococcus neoformans infection. Infect Immun 67:6314–6320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Louboutin JP, Agrawal L, Reyes BA, Van Bockstaele EJ, Strayer DS (2010) HIV-1 gp120-induced injury to the blood-brain barrier: role of metalloproteinases 2 and 9 and relationship to oxidative stress. J Neuropathol Exp Neurol 69:801–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyratzopoulos G, Ellis M, Nerringer R, Denning DW (2002) Invasive infection due to penicillium species other than P. marneffei. J Infect 45:184–195

    Article  CAS  PubMed  Google Scholar 

  • Macauley MS, Crocker PR, Paulson JC (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev 14:653–666

    CAS  Google Scholar 

  • MacLean L, Odiit M, Sternberg JM (2001) Nitric oxide and cytokine synthesis in human African trypanosomiasis. J Infect Dis 184:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Maffei CM, Mirels LF, Sobel RA, Clemons KV, Stevens DA (2004) Cytokine and inducible nitric oxide synthase mRNA expression during experimental murine cryptococcal meningoencephalitis. Infect Immun 72:2338–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan VK (2014) Sporotrichosis: an overview and therapeutic options. Dermatol Res Pract 2014:272376

    PubMed  PubMed Central  Google Scholar 

  • Marciano-Cabral F (2009) Free-living amoebae as agents of human infection. J Infect Dis 199:1104–1106

    Article  PubMed  Google Scholar 

  • Marciano-Cabral F, Puffenbarger R, Cabral GA (2000) The increasing importance of Acanthamoeba infections. J Eukaryot Microbiol 47:29–36

    Article  CAS  PubMed  Google Scholar 

  • Marella M, Chabry J (2004) Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J Neurosci 24:620–627

    Article  CAS  PubMed  Google Scholar 

  • Mas-Coma S, Agramunt VH, Valero MA (2014) Neurological and ocular fascioliasis in humans. Adv Parasitol 84:27–149

    Article  PubMed  Google Scholar 

  • McKimmie CS, Johnson N, Fooks AR, Fazakerley JK (2005) Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem Biophys Res Commun 336:925–933

    Article  CAS  PubMed  Google Scholar 

  • Medana IM, Hien TT, Day NP, Phu NH, Mai NT, Chu’ong LV, Chau TT, Taylor A, Salahifar H, Stocker R, Smythe G, Turner GD, Farrar J, White NJ, Hunt NH (2002) The clinical significance of cerebrospinal fluid levels of kynurenine pathway metabolites and lactate in severe malaria. J Infect Dis 185:650–656

    Article  CAS  PubMed  Google Scholar 

  • Meier UC, Giovannoni G, Tzartos JS, Khan G (2012) Translational Mini-Review Series on B cell subsets in disease. B cells in multiple sclerosis: drivers of disease pathogenesis and Trojan horse for Epstein-Barr virus entry to the central nervous system? Clin Exp Immunol 167:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendel E, Milefchik EN, Amadi J, Gruen P (1994) Coccidioidomycosis brain abscess. Case report. J Neurosurg 81:614–616

    Article  CAS  PubMed  Google Scholar 

  • Miller RG, Storey JR, Greco CM (1990) Ganciclovir in the treatment of progressive AIDS-related polyradiculopathy. Neurology 40:569–574

    Article  CAS  PubMed  Google Scholar 

  • Miller F, Afonso PV, Gessain A, Ceccaldi PE (2012) Blood-brain barrier and retroviral infections. Virulence 3:222–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev 48:251–256

    Article  CAS  PubMed  Google Scholar 

  • Mischel PS, Vinters HV (1995) Coccidioidomycosis of the central nervous system: neuropathological and vasculopathic manifestations and clinical correlates. Clin Infect Dis 20:400–405

    Article  CAS  PubMed  Google Scholar 

  • Mishra BB, Mishra PK, Teale JM (2006) Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 181:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra MK, Dutta K, Saheb SK, Basu A (2009) Understanding the molecular mechanism of blood-brain barrier damage in an experimental model of Japanese encephalitis: correlation with minocycline administration as a therapeutic agent. Neurochem Int 55:717–723

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AM, Mitchell TJ (2010) Streptococcus pneumoniae: virulence factors and variation. Clin Microbiol Infect 16:411–418

    Article  CAS  PubMed  Google Scholar 

  • Mitchell L, Smith SH, Braun JS, Herzog KH, Weber JR, Tuomanen EI (2004) Dual phases of apoptosis in pneumococcal meningitis. J Infect Dis 190:2039–2046

    Article  PubMed  Google Scholar 

  • Mody CH, Tyler CL, Sitrin RG, Jackson C, Toews GB (1991) Interferon-γ activates rat alveolar macrophages for anticryptococcal activity. Am J Respir Cell Mol Biol 5:19–26

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Ebe T (1992) Analysis of cases of central nervous system fungal infections reported in Japan between January 1979 and June 1989. Intern Med (Tokyo, Japan) 31:174–179

    Google Scholar 

  • Mori I, Nishiyama Y, Yokochi T, Kimura Y (2005) Olfactory transmission of neurotropic viruses. J Neurovirol 11:129–137

    Article  PubMed  Google Scholar 

  • Mukherjee P, Woods TA, Moore RA, Peterson KE (2013) Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 38:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, Tryggvason K, Gordon S (2006) MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol 36:940–949

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy G, O’Neill S, Fanning J, McCarthy E, Sekiya M (2005) Tissue migration by parasitic helminths—An immunoevasive strategy? Trends Parasitol 21:273–277

    Article  PubMed  Google Scholar 

  • Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R, Thomas T, Scott D, Fischer ER, Feldmann H, de Wit E (2012) Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2:736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamuta S, Endo H, Higashi Y, Kousaka A, Yamada H, Yano M, Kido H (2008) Human immunodeficiency virus type 1 gp120-mediated disruption of tight junction proteins by induction of proteasome-mediated degradation of zonula occludens-1 and -2 in human brain microvascular endothelial cells. J Neurovirol 14:186–195

    Article  CAS  PubMed  Google Scholar 

  • Nascimento-Carvalho CM, Moreno-Carvalho OA (2005) Neuroschistosomiasis due to Schistosoma mansoni: a review of pathogenesis, clinical syndromes and diagnostic approaches. Rev Inst Med Trop Sao Paulo 47:179–184

    Article  PubMed  Google Scholar 

  • Nazli A, Kafka JK, Ferreira VH, Anipindi V, Mueller K, Osborne BJ, Dizzell S, Chauvin S, Mian MF, Ouellet M, Tremblay MJ, Mossman KL, Ashkar AA, Kovacs C, Bowdish DM, Snider DP, Kaul R, Kaushic C (2013) HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol 191:4246–4258

    Article  CAS  PubMed  Google Scholar 

  • Nazmi A, Dutta K, Basu A (2011) RIG-I mediates innate immune response in mouse neurons following Japanese encephalitis virus infection. PLoS ONE 6:e21761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazmi A, Mukhopadhyay R, Dutta K, Basu A (2012) STING mediates neuronal innate immune response following Japanese encephalitis virus infection. Sci Rep 2:347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazmi A, Mukherjee S, Kundu K, Dutta K, Mahadevan A, Shankar SK, Basu A (2014) TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection. Neurobiol Dis 69:235–247

    Article  CAS  PubMed  Google Scholar 

  • Nicholas PK, Mauceri L, Slate Ciampa A, Corless IB, Raymond N, Barry DJ, Viamonte Ros A (2007) Distal sensory polyneuropathy in the context of HIV/AIDS. J Assoc Nurses AIDS Care 18:32–40

    Article  PubMed  Google Scholar 

  • Noritomi DT, Bub GL, Beer I, da Silva AS, de Cleva R, Gama-Rodrigues JJ (2005) Multiple brain abscesses due to Penicillium spp infection. Rev Inst Med Trop Sao Paulo 47:167–170

    Article  PubMed  Google Scholar 

  • Ohka S, Nihei C, Yamazaki M, Nomoto A (2012) Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway. Front Microbiol 3:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O, Matozaki T (2005) Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 174:2004–2011

    Article  CAS  PubMed  Google Scholar 

  • O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev 7:353–364

    Google Scholar 

  • Osawa R, Williams KL, Singh N (2011) The inflammasome regulatory pathway and infections: role in pathophysiology and clinical implications. J Infect 62:119–129

    Article  PubMed  Google Scholar 

  • Osiyemi OO, Dowdy LM, Mallon SM, Cleary T (2001) Cerebral phaeohyphomycosis due to a novel species: report of a case and review of the literature. Transplantation 71:1343–1346

    Article  CAS  PubMed  Google Scholar 

  • Othman AA (2012) Therapeutic battle against larval toxocariasis: are we still far behind? Acta Trop 124:171–178

    Article  PubMed  Google Scholar 

  • Padigel UM, Lee JJ, Nolan TJ, Schad GA, Abraham D (2006) Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun 74:3232–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padigel UM, Hess JA, Lee JJ, Lok JB, Nolan TJ, Schad GA, Abraham D (2007) Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J Infect Dis 196:1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palus M, Bily T, Elsterova J, Langhansova H, Salat J, Vancova M, Ruzek D (2014) Infection and injury of human astrocytes by tick-borne encephalitis virus. J Gen Virol 95:2411–2426

    Article  PubMed  CAS  Google Scholar 

  • Pareek S, Roy S, Kumari B, Jain P, Banerjee A, Vrati S (2014) MiR-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune responses. J Neuroinflamm 11:97

    Article  CAS  Google Scholar 

  • Parker JC Jr, McCloskey JJ, Lee RS (1978) The emergence of candidosis. The dominant postmortem cerebral mycosis. Am J Clin Pathol 70:31–36

    Article  PubMed  Google Scholar 

  • Pedersen M, Benfield TL, Skinhoej P, Jensen AG (2006) Haematogenous Staphylococcus aureus meningitis. A 10-year nationwide study of 96 consecutive cases. BMC Infect Dis 6:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Peltier DC, Simms A, Farmer JR, Miller DJ (2010) Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J Immunol 184:7010–7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentreath VW (1989) Neurobiology of sleeping sickness. Parasitol Today 5:215–218

    Google Scholar 

  • Pentreath VW (1995) Royal Society of Tropical Medicine and Hygiene Meeting at Manson House, London, 19 May 1994. Trypanosomiasis and the nervous system. Pathology and immunology. Trans R Soc Trop Med Hyg 89:9–15

    Article  CAS  PubMed  Google Scholar 

  • Perry VH, Andersson PB (1992) The inflammatory response in the CNS. Neuropathol Appl Neurobiol 18:454–459

    Article  CAS  PubMed  Google Scholar 

  • Pietila M, Lehtonen S, Tuovinen E, Lahteenmaki K, Laitinen S, Leskela HV, Natynki A, Pesala J, Nordstrom K, Lehenkari P (2012) CD200 positive human mesenchymal stem cells suppress TNF-alpha secretion from CD200 receptor positive macrophage-like cells. PLoS ONE 7:e31671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittella JE (2009) Central nervous system involvement in Chagas disease: a hundred-year-old history. Trans R Soc Trop Med Hyg 103:973–978

    Article  PubMed  Google Scholar 

  • Pittella JE (2013) Pathology of CNS parasitic infections. Handb Clin Neurol 114:65–88

    Article  PubMed  Google Scholar 

  • Prasad LS, Sen S (1996) Migration of Leishmania donovani amastigotes in the cerebrospinal fluid. Am J Trop Med Hyg 55:652–654

    CAS  PubMed  Google Scholar 

  • Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79:12893–12904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss MA, Faber ML, Tan GS, Bette M, Dietzschold B, Weihe E, Schnell MJ (2009) Intravenous inoculation of a bat-associated rabies virus causes lethal encephalopathy in mice through invasion of the brain via neurosecretory hypothalamic fibers. PLoS Pathog 5:e1000485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price RW (1986) Neurobiology of human herpesvirus infections. CRC Crit Rev Clin Neurobiol 2:61–123

    CAS  PubMed  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science (New York, NY) 216:136–144

    Article  CAS  Google Scholar 

  • Qin H, Yeh WI, De Sarno P, Holdbrooks AT, Liu Y, Muldowney MT, Reynolds SL, Yanagisawa LL, Fox TH 3rd, Park K, Harrington LE, Raman C, Benveniste EN (2012) Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci USA 109:5004–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racaniello VR (2006) One hundred years of poliovirus pathogenesis. Virology 344:9–16

    Article  CAS  PubMed  Google Scholar 

  • Raman Sharma R (2010) Fungal infections of the nervous system: current perspective and controversies in management. Int J Surg (London, England) 8:591–601

    Google Scholar 

  • Rambach G, Maier H, Vago G, Mohsenipour I, Lass-Florl C, Defant A, Wurzner R, Dierich MP, Speth C (2008) Complement induction and complement evasion in patients with cerebral aspergillosis. Microbes Infect/Institut Pasteur 10:1567–1576

    Article  CAS  Google Scholar 

  • Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47

    Article  CAS  PubMed  Google Scholar 

  • Randall PJ, Hsu NJ, Lang D, Cooper S, Sebesho B, Allie N, Keeton R, Francisco NM, Salie S, Labuschagné A, Quesniaux V, Ryffel B, Kellaway L, Jacobs M (2014) Neurons are host cells for Mycobacterium tuberculosis. Infect Immun 82:1880–1890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev 3:569–581

    CAS  Google Scholar 

  • Raymond J (2012) Neisseria meningitidis: characterisation and epidemiology. Arch Pediatr 19(Suppl 2):S55–S60

    Article  PubMed  Google Scholar 

  • Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnaes-Hansen F, Ulhoi BP, Holm TH, Mogensen TH, Owens T, Nyengaard JR, Thomsen AR, Paludan SR (2012) TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Investig 122:1368–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    Article  CAS  PubMed  Google Scholar 

  • Reuter D, Schneider-Schaulies J (2010) Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 199:261–271

    Article  CAS  PubMed  Google Scholar 

  • Reyes JL, Gonzalez MI, Ledesma-Soto Y, Satoskar AR, Terrazas LI (2011) TLR2 mediates immunity to experimental cysticercosis. Int J Bio Sci 7:1323–1333

    Article  CAS  Google Scholar 

  • Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R (2011) Enterovirus infections of the central nervous system. Virology 411:288–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich AR, McCordock HA (1933) Pathogenesis of tubercular meningitis. Bull John Hopkins Hosp 52:5–13

    Google Scholar 

  • Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev 9:429–439

    Article  CAS  Google Scholar 

  • Roberts TK, Eugenin EA, Lopez L, Romero IA, Weksler BB, Couraud PO, Berman JW (2012) CCL2 disrupts the adherens junction: implications for neuroinflammation. Lab Invest J Tech Methods Pathol 92:1213–1233

    Article  CAS  Google Scholar 

  • Rock RB, Hu S, Gekker G, Sheng WS, May B, Kapur V, Peterson PK (2005) Mycobacterium tuberculosis-induced cytokine and chemokine expression by human microglia and astrocytes: effects of dexamethasone. J Infect Dis 192:2054–2058

    Article  CAS  PubMed  Google Scholar 

  • Rom WN, Garay SM (2004) Tuberculosis, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Romani L (2011) Immunity to fungal infections. Nat Rev 11:275–288

    CAS  Google Scholar 

  • Romero JR, Newland JG (2003) Viral meningitis and encephalitis: traditional and emerging viral agents. Semin Pediatr Infect Dis 14:72–82

    Article  PubMed  Google Scholar 

  • Roos A, Xu W, Castellano G, Nauta AJ, Garred P, Daha MR, van Kooten C (2004) Mini-review: a pivotal role for innate immunity in the clearance of apoptotic cells. Eur J Immunol 34:921–929

    Article  CAS  PubMed  Google Scholar 

  • Saidha S, Sotirchos ES, Eckstein C (2012) Etiology of sarcoidosis: does infection play a role? Yale J Biol Med 85:133–141

    PubMed  PubMed Central  Google Scholar 

  • Sakaguchi M, Okano H (2012) Neural stem cells, adult neurogenesis, and galectin-1: from bench to bedside. Dev Neurobiol 72:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Salunke P, Patra DP, Mukherjee KK (2014) Delayed cerebral vasospasm and systemic inflammatory response syndrome following intraoperative rupture of cerebral hydatid cyst. Acta Neurochir (Wien) 156:613–614

    Article  Google Scholar 

  • Sarma PS, Durairaj P, Padhye AA (1993) Candida lusitaniae causing fatal meningitis. Postgrad Med J 69:878–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassa Y, Inoshima Y, Ishiguro N (2010) Bovine macrophage degradation of scrapie and BSE PrPSc. Vet Immunol Immunopathol 133:33–39

    Article  CAS  PubMed  Google Scholar 

  • Savarin C, Bergmann CC (2008) Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr Opin Pharmacol 8:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savarin C, Bergmann CC, Hinton DR, Stohlman SA (2013) MMP-independent role of TIMP-1 at the blood brain barrier during viral encephalomyelitis. ASN Neuro 5:e00127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheld WM, Koedel U, Nathan B, Pfister HW (2002) Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 186(Suppl 2):S225–S233

    Article  CAS  PubMed  Google Scholar 

  • Schluter D, Hein A, Dorries R, Deckert-Schluter M (1995) Different subsets of T cells in conjunction with natural killer cells, macrophages, and activated microglia participate in the intracerebral immune response to Toxoplasma gondii in athymic nude and immunocompetent rats. Am J Pathol 146:999–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schluter D, Kaefer N, Hof H, Wiestler OD, Deckert-Schluter M (1997) Expression pattern and cellular origin of cytokines in the normal and Toxoplasma gondii-infected murine brain. Am J Pathol 150:1021–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schluter D, Bertsch D, Frei K, Hubers SB, Wiestler OD, Hof H, Fontana A, Deckert-Schluter M (1998) Interferon-γ antagonizes transforming growth factor-β2-mediated immunosuppression in murine Toxoplasma encephalitis. J Neuroimmunol 81:38–48

    Article  CAS  PubMed  Google Scholar 

  • Schluter D, Deckert M, Hof H, Frei K (2001) Toxoplasma gondii infection of neurons induces neuronal cytokine and chemokine production, but gamma interferon- and tumor necrosis factor-stimulated neurons fail to inhibit the invasion and growth of T. gondii. Infect Immun 69:7889–7893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott EN, Kaufman L, Brown AC, Muchmore HG (1987) Serologic studies in the diagnosis and management of meningitis due to Sporothrix schenckii. N Engl J Med 317:935–940

    Article  CAS  PubMed  Google Scholar 

  • Scrimgeour EM, Gajdusek DC (1985) Involvement of the central nervous system in Schistosoma mansoni and S. haematobium infection. A review. Brain 108(Pt 4):1023–1038

    Google Scholar 

  • Sellner J, Tauber MG, Leib SL (2010) Pathogenesis and pathophysiology of bacterial CNS infections. Handb Clin Neurol 96:1–16

    Article  PubMed  Google Scholar 

  • Sharafeldin A, Eltayeb R, Pashenkov M, Bakhiet M (2000) Chemokines are produced in the brain early during the course of experimental African trypanosomiasis. J Neuroimmunol 103:165–170

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Verma R, Kumawat KL, Basu A, Singh SK (2015) miR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells. J Neuroinflamm 12:30

    Article  CAS  Google Scholar 

  • Sheen TR, Ebrahimi CM, Hiemstra IH, Barlow SB, Peschel A, Doran KS (2010) Penetration of the blood-brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J Mol Med (Berlin, Germany) 88:633–639

    Google Scholar 

  • Shi Z, Cai Z, Sanchez A, Zhang T, Wen S, Wang J, Yang J, Fu S, Zhang D (2011) A novel Toll-like receptor that recognizes vesicular stomatitis virus. J Biol Chem 286:4517–4524

    Article  CAS  PubMed  Google Scholar 

  • Shih AY, Fernandes HB, Choi FY, Kozoriz MG, Liu Y, Li P, Cowan CM, Klegeris A (2006) Policing the police: astrocytes modulate microglial activation. J Neurosci 26:3887–3888

    Article  CAS  PubMed  Google Scholar 

  • Shin T (2013) The pleiotropic effects of galectin-3 in neuroinflammation: a review. Acta Histochem 115:407–411

    Article  CAS  PubMed  Google Scholar 

  • Shin MH, Chung YB, Kita H (2005) Degranulation of human eosinophils induced by Paragonimus westermani-secreted protease. Korean J Parasitol 43:33–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva AA, Roffe E, Marino AP, dos Santos PV, Quirico-Santos T, Paiva CN, Lannes-Vieira J (1999) Chagas’ disease encephalitis: intense CD8+ lymphocytic infiltrate is restricted to the acute phase, but is not related to the presence of Trypanosoma cruzi antigens. Clin Immunol (Orlando Fla) 92:56–66

    Article  CAS  Google Scholar 

  • Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P (1999) Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest J Tech Methods Pathol 79:1247–1259

    CAS  Google Scholar 

  • Sips GJ, Wilschut J, Smit JM (2012) Neuroinvasive flavivirus infections. Rev Med Virol 22:69–87

    Article  CAS  PubMed  Google Scholar 

  • Sisk JM, Witwer KW, Tarwater PM, Clements JE (2013) SIV replication is directly downregulated by four antiviral miRNAs. Retrovirology 10:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skattum L, van Deuren M, van der Poll T, Truedsson L (2011) Complement deficiency states and associated infections. Mol Immunol 48:1643–1655

    Article  CAS  PubMed  Google Scholar 

  • Skiada A, Vrana L, Polychronopoulou H, Prodromou P, Chantzis A, Tofas P, Daikos GL (2009) Disseminated zygomycosis with involvement of the central nervous system. Clin Microbiol Infect 15(Suppl 5):46–49

    Article  PubMed  Google Scholar 

  • Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10:778–790

    Article  PubMed  Google Scholar 

  • Sood S, Vaid VK, Sharma M, Bhartiya H (2014) Cerebral phaeohyphomycosis by Exophiala dermatitidis. Indian J Med Microbiol 32:188–190

    Article  CAS  PubMed  Google Scholar 

  • Spanos JP, Hsu N-J, Jacobs M (2015) Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci 9:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Speth C, Rambach G, Wurzner R, Lass-Florl C (2008) Complement and fungal pathogens: an update. Mycoses 51:477–496

    Article  CAS  PubMed  Google Scholar 

  • Stauffer W, Ravdin JI (2003) Entamoeba histolytica: an update. Curr Opin Infect Dis 16:479–485

    Article  PubMed  Google Scholar 

  • Stavros K, Simpson DM (2014) Understanding the etiology and management of HIV-associated peripheral neuropathy. Curr HIV/AIDS Rep 11:195–201

    Article  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59:561–574

    Article  CAS  PubMed  Google Scholar 

  • Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR (2011) Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 1399:96–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S (2015) Compartmentalized replication of R5 T Cell-Tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 11:e1004720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H (2014) Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 6:2796–2825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suh HS, Zhao ML, Choi N, Belbin TJ, Brosnan CF, Lee SC (2009) TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology 392:246–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri P, Chhina DK, Kaushal V, Kaushal RK, Singh J (2014) Cerebral phaeohyphomycosis due to cladophialophora bantiana—A case report and review of literature from India. J Clin Diagn Res 8:DD01–DD05

    Google Scholar 

  • Surmont I, Vergauwen B, Marcelis L, Verbist L, Verhoef G, Boogaerts M (1990) First report of chronic meningitis caused by Trichosporon beigelii. Eur J Clin Microbiol Infect Dis 9:226–229

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T (2005) Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol 35:83–90

    Article  CAS  PubMed  Google Scholar 

  • Swanson PA 2nd, McGavern DB (2015) Viral diseases of the central nervous system. Curr Opin Virol 11C:44–54

    Article  Google Scholar 

  • Tabor-Godwin JM, Ruller CM, Bagalso N, An N, Pagarigan RR, Harkins S, Gilbert PE, Kiosses WB, Gude NA, Cornell CT, Doran KS, Sussman MA, Whitton JL, Feuer R (2010) A novel population of myeloid cells responding to coxsackievirus infection assists in the dissemination of virus within the neonatal CNS. J Neurosci 30:8676–8691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayanagui OM, Lofrano MM, Araugo MB, Chimelli L (1995) Detection of Strongyloides stercoralis in the cerebrospinal fluid of a patient with acquired immunodeficiency syndrome. Neurology 45:193–194

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227:75–86

    Article  CAS  PubMed  Google Scholar 

  • Taratuto AL, Venturiello SM (1997) Trichinosis. Brain pathology (Zurich, Switzerland) 7:663–672

    Google Scholar 

  • Tato CM, Hunter CA (2002) Host-pathogen interactions: subversion and utilization of the NF-κB pathway during infection. Infect Immun 70:3311–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrazas LI (2008) The complex role of pro- and anti-inflammatory cytokines in cysticercosis: immunological lessons from experimental and natural hosts. Curr Top Med Chem 8:383–392

    Article  CAS  PubMed  Google Scholar 

  • Thompson KA, Cherry CL, Bell JE, McLean CA (2011) Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol 179:1623–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton CR (2009) Tracking the emerging human pathogen Pseudallescheria boydii by using highly specific monoclonal antibodies. Clin Vaccine Immunol 16:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thounaojam MC, Kundu K, Kaushik DK, Swaroop S, Mahadevan A, Shankar SK, Basu A (2014) MicroRNA 155 regulates Japanese encephalitis virus-induced inflammatory response by targeting Src homology 2-containing inositol phosphatase 1. J Virol 88:4798–4810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tien RD, Chu PK, Hesselink JR, Duberg A, Wiley C (1991) Intracranial cryptococcosis in immunocompromised patients: CT and MR findings in 29 cases. Ajnr 12:283–289

    CAS  PubMed  Google Scholar 

  • Vale TC, de Sousa-Pereira SR, Ribas JG, Lambertucci JR (2012) Neuroschistosomiasis mansoni: literature review and guidelines. Neurologist 18:333–342

    Article  PubMed  Google Scholar 

  • van de Veerdonk FL, Kullberg BJ, van der Meer JW, Gow NA, Netea MG (2008) Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 11:305–312

    Article  PubMed  CAS  Google Scholar 

  • van Den Pol AN, Mocarski E, Saederup N, Vieira J, Meier TJ (1999) Cytomegalovirus cell tropism, replication, and gene transfer in brain. J Neurosci 19:10948–10965

    Google Scholar 

  • van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, Maingat F, Urbanowski MD, Hobman T, Peeling J, Power C (2007) West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 81:10933–10949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Riel D, Verdijk R, Kuiken T (2015) The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 235:277–287

    Article  PubMed  CAS  Google Scholar 

  • Vanittanakom N, Cooper CR Jr, Fisher MC, Sirisanthana T (2006) Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 19:95–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjav U, Luo H, Nakatsuka A, Nerurkar VR (2009) West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood-brain barrier. Virology 385:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalba M, Hott M, Martin C, Aguila B, Valdivia S, Quezada C, Zambrano A, Concha MI, Otth C (2012) Herpes simplex virus type 1 induces simultaneous activation of Toll-like receptors 2 and 4 and expression of the endogenous ligand serum amyloid A in astrocytes. Med Microbiol Immunol 201:371–379

    Article  CAS  PubMed  Google Scholar 

  • Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF (2008) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46:327–360

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Suyama K, Hashimoto K, Sato M, Ohara S, Abe Y, Kawasaki Y, Yamaguchi S, Saijo M, Hosoya M (2013) Mumps virus-associated acute encephalopathy: case report and review of the literature. J Child Neurol 28:243–245

    Article  PubMed  Google Scholar 

  • White AC Jr, Robinson P, Kuhn R (1997) Taenia solium cysticercosis: host-parasite interactions and the immune response. Chem Immunol 66:209–230

    Article  PubMed  Google Scholar 

  • Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ, Eugenin EA, Morgello S, Berman JW (2013) Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS ONE 8:e69270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woldeamanuel YW, Girma B (2014) A 43-year systematic review and meta-analysis: case-fatality and risk of death among adults with tuberculous meningitis in Africa. J Neurol 261:851–865

    Article  PubMed  Google Scholar 

  • Wolinsky JS, Baringer JR, Margolis G, Kilham L (1974) Ultrastructure of mumps virus replication in newborn hamster central nervous system. Lab Invest J Tech Methods Pathol 31:403–412

    CAS  Google Scholar 

  • Woll F, Gotuzzo E, Montes M (2013) Strongyloides stercoralis infection complicating the central nervous system. Handb Clin Neurol 114:229–234

    Article  PubMed  Google Scholar 

  • Wu HS, Kolonoski P, Chang YY, Bermudez LE (2000a) Invasion of the brain and chronic central nervous system infection after systemic Mycobacterium avium complex infection in mice. Infect Immun 68:2979–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS (2000b) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816–820

    Article  CAS  PubMed  Google Scholar 

  • Wuerfel E, Infante-Duarte C, Glumm R, Wuerfel JT (2010) Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J Neuroinflamm 7:70

    Article  Google Scholar 

  • Xie G, Welte T, Wang J, Whiteman MC, Wicker JA, Saxena V, Cong Y, Barrett AD, Wang T (2013) A West Nile virus NS4B-P38G mutant strain induces adaptive immunity via TLR7-MyD88-dependent and independent signaling pathways. Vaccine 31:4143–4151

    Article  CAS  PubMed  Google Scholar 

  • Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock (Augusta. Ga 26:174–179

    CAS  Google Scholar 

  • Zanetta JP (1998) Structure and functions of lectins in the central and peripheral nervous system. Acta Anat 161:180–195

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zhao L, Zhang K, Feng H, Wang H, Wang T, Xu T, Feng N, Wang C, Gao Y, Huang G, Qin C, Yang S, Xia X (2012) Infection with street strain rabies virus induces modulation of the microRNA profile of the mouse brain. Virol J 9:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kallol Dutta or Anirban Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Dutta, K., Ghosh, S., Basu, A. (2016). Infections and Inflammation in the Brain and Spinal Cord: A Dangerous Liaison. In: Jana, N., Basu, A., Tandon, P. (eds) Inflammation: the Common Link in Brain Pathologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-1711-7_4

Download citation

Publish with us

Policies and ethics