Skip to main content

Humanized Mice as a Platform for the Development of Long-Acting Nanoformulated Antiretroviral Therapy

  • Chapter
  • First Online:
Humanized Mice for HIV Research

Abstract

Cell-carried nanoformulations of antiretroviral therapy (nanoART) were pioneered at the University of Nebraska Medical Center. The platform utilizes monocyte-macrophages as Trojan Horses for drug delivery to human immunodeficiency viral reservoirs. This includes virus target cells, tissues, and subcellular organelles where the virus completes its life cycle. Particles manufactured with polymer excipients are coated with sugars or peptides, facilitating particle cell uptake and sequestration. The intent, overall, is to use cells as drug depots and endosomes as storage centers for particle-associated and free bioactive medicines. The latter contains drugs that are dissociated from particles over periods of days to weeks. Parenteral administration of nanoART produced drug concentrations in the reticuloendothelial system above the effective dose 50 with limited systemic toxicities. Antiretroviral responses were realized through studies of human immunodeficiency virus type one (HIV-1) infected humanized mice. The results showed that weekly parenteral administration of nanoART could reduce plasma virus to at or below five viral copies/ml. Targeting of the nanoART to monocyte-macrophages enabled “best” pharmacokinetic (PK) outcomes. These studies could lead to improved drug compliance, diminished viral resistance, and facilitation of virus reservoir reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434–43.

    CAS  PubMed  Google Scholar 

  2. McMillan J, Batrakova E, Gendelman HE. Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci. 2011;104:563–601.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.

    CAS  PubMed  Google Scholar 

  4. Pautler M, Brenner S. Nanomedicine: promises and challenges for the future of public health. Int J Nanomedicine. 2010;5:803–9.

    PubMed Central  PubMed  Google Scholar 

  5. Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today. 2010;15(19–20):842–50.

    CAS  PubMed  Google Scholar 

  6. Sampathkumar SG, Yarema KJ. Targeting cancer cells with dendrimers. Chem Biol. 2005;12(1):5–6.

    CAS  PubMed  Google Scholar 

  7. Seigneuric R, Markey L, Nuyten DS, Dubernet C, Evelo CT, Finot E, et al. From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med. 2010;10(7):640–52.

    CAS  PubMed  Google Scholar 

  8. Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine. 2011;6:3281–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. New RR, Chance ML, Heath S. Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposomes. J Antimicrob Chemother. 1981;8(5):371–81.

    CAS  PubMed  Google Scholar 

  10. Graybill JR, Craven PC, Taylor RL, Williams DM, Magee WE. Treatment of murine cryptococcosis with liposome-associated amphotericin B. J Infect Dis. 1982;145(5):748–52.

    CAS  PubMed  Google Scholar 

  11. Taylor RL, Williams DM, Craven PC, Graybill JR, Drutz DJ, Magee WE. Amphotericin B in liposomes: a novel therapy for histoplasmosis. Am Rev Respir Dis. 1982;125(5):610–1.

    CAS  PubMed  Google Scholar 

  12. Heath S, Chance ML, New RR. Quantitative and ultrastructural studies on the uptake of drug loaded liposomes by mononuclear phagocytes infected with Leishmania donovani. Mol Biochem Parasitol. 1984;12(1):49–60.

    CAS  PubMed  Google Scholar 

  13. Batrakova EV, Gendelman HE, Kabanov AV. Cell-mediated drug delivery. Expert Opin Drug Deliv. 2011;8(4):415–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Dash PK, Gendelman HE, Roy U, Balkundi S, Alnouti Y, Mosley RL, et al. Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS. 2012;26(17):2135–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol. 2009;183(1):661–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Nowacek AS, McMillan J, Miller R, Anderson A, Rabinow B, Gendelman HE. Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics. J Neuroimmune Pharmacol. 2010;5(4):592–601.

    PubMed Central  PubMed  Google Scholar 

  17. Puligujja P, McMillan J, Kendrick L, Li T, Balkundi S, Smith N, et al. Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine. 2013;9(8):1263–73.

    CAS  PubMed  Google Scholar 

  18. Roy U, McMillan J, Alnouti Y, Gautum N, Smith N, Balkundi S, et al. Pharmacodynamic and antiretroviral activities of combination nanoformulated antiretrovirals in HIV-1-infected human peripheral blood lymphocyte-reconstituted mice. J Infect Dis. 2012;206(10):1577–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Destache CJ, Belgum T, Christensen K, Shibata A, Sharma A, Dash A. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect Dis. 2009;9:198.

    PubMed Central  PubMed  Google Scholar 

  20. Shibata A, McMullen E, Pham A, Belshan M, Sanford B, Zhou Y, et al. Polymeric nanoparticles containing combination antiretroviral drugs for HIV Type 1 treatment. AIDS Res Hum Retroviruses. 2013;29(5):746–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Palmer S, Josefsson L, Coffin JM. HIV reservoirs and the possibility of a cure for HIV infection. J Intern Med. 2011;270(6):550–60.

    CAS  PubMed  Google Scholar 

  22. WHO. HIV/AIDS Fact Sheet NË360 2012 (accessed 2013 June). http://www.who.int/mediacentre/factsheets/fs360/en/.

  23. CDC. Diagnoses of HIV Infection in the United States and Dependent Areas, 2011 (accessed 2013 June). http://www.cdc.gov/hiv/library/reports/surveillance/2011/surveillance_Report_vol_23.html.

  24. Valcour V, Sithinamsuwan P, Letendre S, Ances B. Pathogenesis of HIV in the central nervous system. Curr HIV/AIDS Rep. 2011;8(1):54–61.

    PubMed Central  PubMed  Google Scholar 

  25. Chen RY, Westfall AO, Raper JL, Cloud GA, Chatham AK, Acosta EP, et al. Immunologic and virologic consequences of temporary antiretroviral treatment interruption in clinical practice. AIDS Res Hum Retroviruses. 2002;18(13):909–16.

    PubMed  Google Scholar 

  26. Chulamokha L, DeSimone JA, Pomerantz RJ. Antiretroviral therapy in the developing world. J neurovirol. 2005;11(Suppl 1):76–80.

    PubMed  Google Scholar 

  27. Fellay J, Boubaker K, Ledergerber B, Bernasconi E, Furrer H, Battegay M, et al. Prevalence of adverse events associated with potent antiretroviral treatment: Swiss HIV Cohort Study. Lancet. 2001;358(9290):1322–7.

    CAS  PubMed  Google Scholar 

  28. Hawkins T. Appearance-related side effects of HIV-1 treatment. AIDS Patient Care STDS. 2006;20(1):6–18.

    PubMed  Google Scholar 

  29. Shehu-Xhilaga M, Tachedjian G, Crowe SM, Kedzierska K. Antiretroviral compounds: mechanisms underlying failure of HAART to eradicate HIV-1. Curr Med Chem. 2005;12(15):1705–19.

    CAS  PubMed  Google Scholar 

  30. Llibre JM, Clotet B. Once-daily single-tablet regimens: a long and winding road to excellence in antiretroviral treatment. AIDS Rev. 2012;14(3):168–78.

    PubMed  Google Scholar 

  31. Permpalung N, Putcharoen O, Avihingsanon A, Ruxrungtham K. Treatment of HIV infection with once-daily regimens. Expert Opin Pharmacother. 2012;13(16):2301–17.

    CAS  PubMed  Google Scholar 

  32. Wegzyn CM, Wyles DL. Antiviral drug advances in the treatment of human immunodeficiency virus (HIV) and chronic hepatitis C virus (HCV). Curr Opin Pharmacol. 2012;12(5):556–61.

    CAS  PubMed  Google Scholar 

  33. Kontorinis N, Dieterich D. Hepatotoxicity of antiretroviral therapy. AIDS Rev. 2003;5(1):36–43.

    PubMed  Google Scholar 

  34. Kranick SM, Nath A. Neurologic complications of HIV-1 infection and its treatment in the era of antiretroviral therapy. Continuum (Minneap Minn). 2012;18(6 Infectious Disease):1319–37.

    Google Scholar 

  35. Luetkemeyer AF, Havlir DV, Currier JS. Complications of HIV disease and antiretroviral therapy. Top Antivir Med. 2012;20(2):48–60.

    PubMed  Google Scholar 

  36. McCance-Katz EF. Treatment of opioid dependence and coinfection with HIV and hepatitis C virus in opioid-dependent patients: the importance of drug interactions between opioids and antiretroviral agents. Clin Infect Dis. 2005;41(Suppl 1):S89–95.

    CAS  PubMed  Google Scholar 

  37. Rather ZA, Chowta MN, Raju GJ, Mubeen F. Evaluation of the adverse reactions of antiretroviral drug regimens in a tertiary care hospital. Indian J Pharmacol. 2013;45(2):145–8.

    PubMed Central  PubMed  Google Scholar 

  38. McKinnon JE, Mellors JW, Swindells S. Simplification strategies to reduce antiretroviral drug exposure: progress and prospects. Antivir Ther. 2009;14(1):1–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Swindells S, Flexner C, Fletcher CV, Jacobson JM. The critical need for alternative antiretroviral formulations, and obstacles to their development. J Infect Dis. 2011;204(5):669–74.

    PubMed Central  PubMed  Google Scholar 

  40. Williams J, Sayles HR, Meza J, Sayre P, Sandkovsky U, Gendelman HE, et al. Long-acting parenteral nanoformulated antiretroviral therapy: interest and attitudes of HIV-infected patients. Nanomedicine. 2013;8(11):1807–13.

    Google Scholar 

  41. Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood. 2006;108(8):2827–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Kanmogne GD, Singh S, Roy U, Liu X, McMillan J, Gorantla S, et al. Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine. 2012;7:2373–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, et al. Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release. 2011;150(2):204–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Nowacek AS, Miller RL, McMillan J, Kanmogne G, Kanmogne M, Mosley RL, et al. NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomedicine (Lond). 2009;4(8):903–17.

    CAS  Google Scholar 

  45. Nowacek A, Gendelman HE. NanoART, neuroAIDS and CNS drug delivery. Nanomedicine (Lond). 2009;4(5):557–74.

    CAS  Google Scholar 

  46. Lewin SR, Rouzioux C. HIV cure and eradication: how will we get from the laboratory to effective clinical trials? AIDS. 2011;25(7):885–97.

    PubMed  Google Scholar 

  47. Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011;13(3):135–48.

    Google Scholar 

  48. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, et al. The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology. 2009;6:76.

    PubMed Central  PubMed  Google Scholar 

  50. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y, et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood. 2007;109(1):212–8.

    CAS  PubMed  Google Scholar 

  51. Mahajan SD, Aalinkeel R, Law WC, Reynolds JL, Nair BB, Sykes DE, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine. 2012;7:5301–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Chen J, Li Z, Huang H, Yang Y, Ding Q, Mai J, et al. Improved antigen cross-presentation by polyethyleneimine-based nanoparticles. Int J Nanomedicine. 2011;6:77–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470(7335):543–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Klippstein R, Pozo D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine. 2010;6(4):523–9.

    CAS  PubMed  Google Scholar 

  55. Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006;27(12):573–9.

    CAS  PubMed  Google Scholar 

  56. Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M. Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(3):205–18.

    CAS  PubMed  Google Scholar 

  57. Batrakova EV, Li S, Reynolds AD, Mosley RL, Bronich TK, Kabanov AV, et al. A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjug Chem. 2007;18(5):1498–506.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Hogan C, Wilkins E. Neurological complications in HIV. Clin Med. 2011;11(6):571–5.

    PubMed  Google Scholar 

  59. Spudich SS, Ances BM. Neurologic complications of HIV infection. Top Antivir Med. 2012;20(2):41–7.

    PubMed  Google Scholar 

  60. Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012;2(4):a007161.

    PubMed Central  PubMed  Google Scholar 

  61. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2(10):750–63.

    CAS  PubMed  Google Scholar 

  62. Lee FJ, Carr A. Tolerability of HIV integrase inhibitors. Curr Opin HIV AIDS. 2012;7(5):422–8.

    CAS  PubMed  Google Scholar 

  63. Malet I, Calvez V, Marcelin AG. The future of integrase inhibitors of HIV-1. Curr Opin Virol. 2012;2(5):580–7.

    CAS  PubMed  Google Scholar 

  64. Sharma AK, George V, Valiathan R, Pilakka-Kanthikeel S, Pallikkuth S. Inhibitors of HIV-1 entry and integration: recent developments and impact on treatment. Recent Pat Inflamm Allergy Drug Discov. 2013;7(2):151–61.

    CAS  PubMed  Google Scholar 

  65. De Feo CJ, Weiss CD. Escape from human immunodeficiency virus type 1 (HIV-1) entry inhibitors. Viruses. 2012;4(12):3859–911.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Quashie PK, Mesplede T, Wainberg MA. Evolution of HIV integrase resistance mutations. Curr Opin Infect Dis. 2013;26(1):43–9.

    CAS  PubMed  Google Scholar 

  67. Wainberg MA, Mesplede T, Quashie PK. The development of novel HIV integrase inhibitors and the problem of drug resistance. Curr Opin Virol. 2012;2(5):656–62.

    CAS  PubMed  Google Scholar 

  68. De Man J, Colebunders R, Florence E, Laga M, Kenyon C. What is the place of pre-exposure prophylaxis in HIV prevention? AIDS Rev. 2013;15(2):102–11.

    Google Scholar 

  69. Underhill K, Morrow KM, Operario D, Mayer KH. Could FDA approval of pre-exposure Prophylaxis make a difference? A qualitative study of PrEP acceptability and FDA perceptions among men who have sex with men. AIDS Behav. 2013;18(2):241–9.

    Google Scholar 

  70. Wire MB, Shelton MJ, Studenberg S. Fosamprenavir: clinical pharmacokinetics and drug interactions of the amprenavir prodrug. Clin Pharmacokinet. 2006;45(2):137–68.

    CAS  PubMed  Google Scholar 

  71. van Heeswijk RP, Veldkamp A, Mulder JW, Meenhorst PL, Lange JM, Beijnen JH, et al. Combination of protease inhibitors for the treatment of HIV-1-infected patients: a review of pharmacokinetics and clinical experience. Antivir Ther. 2001;6(4):201–29.

    PubMed  Google Scholar 

  72. Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentre F, Taburet AM. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin Pharmacokinet. 2010;49(1):17–45.

    CAS  PubMed  Google Scholar 

  73. Perez-Valero I, Bayon C, Cambron I, Gonzalez A, Arribas JR. Protease inhibitor monotherapy and the CNS: peace of mind? J Antimicrob Chemother. 2011;66(9):1954–62.

    CAS  PubMed  Google Scholar 

  74. Wynn HE, Brundage RC, Fletcher CV. Clinical implications of CNS penetration of antiretroviral drugs. CNS Drugs. 2002;16(9):595–609.

    CAS  PubMed  Google Scholar 

  75. Gray JM, Cohn DL. Tuberculosis and HIV coinfection. Semin Respir Crit Care Med. 2013;34(1):32–43.

    PubMed  Google Scholar 

  76. Idemyor V. HIV and tuberculosis coinfection: inextricably linked liaison. J Natl Med Assoc. 2007;99(12):1414–9.

    PubMed Central  PubMed  Google Scholar 

  77. Stephan C. Virological efficacy and safety of antiretroviral therapy-switch to atazanavir-based regimen: a review of the literature. Expert Opin Pharmacother. 2012;13(16):2355–67.

    CAS  PubMed  Google Scholar 

  78. Scarpino M, Pinzone MR, Di Rosa M, Madeddu G, Foca E, Martellotta F, et al. Kidney disease in HIV-infected patients. Eur Rev Med Pharmacol Sci. 2013;17(19):2660–7.

    CAS  PubMed  Google Scholar 

  79. Garg H, Joshi A, Mukherjee D. Cardiovascular complications of HIV infection and treatment. Cardiovasc Hematol Agents Med Chem. 2013;11(1):58–66.

    CAS  PubMed  Google Scholar 

  80. Nachega JB, Trotta MP, Nelson M, Ammassari A. Impact of metabolic complications on antiretroviral treatment adherence: clinical and public health implications. Curr HIV/AIDS Rep. 2009;6(3):121–9.

    PubMed  Google Scholar 

  81. Parfieniuk-Kowerda A, Czaban SL, Grzeszczuk A, Jaroszewicz J, Flisiak R. Assessment of serum IGF-1 and adipokines related to metabolic dysfunction in HIV-infected adults. Cytokine. 2013;64(1):97–102.

    CAS  PubMed  Google Scholar 

  82. Seremeta KP, Chiappetta DA, Sosnik A. Poly(epsilon-caprolactone), Eudragit® RS 100 and poly(epsilon-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B Biointerfaces. 2013;102:441–9.

    CAS  PubMed  Google Scholar 

  83. Chiappetta DA, Hocht C, Opezzo JA, Sosnik A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond). 2013;8(2):223–37.

    CAS  Google Scholar 

  84. Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells. Int J Pharm. 2012;437(1–2):29–41.

    CAS  PubMed  Google Scholar 

  85. Belletti D, Tosi G, Forni F, Gamberini MC, Baraldi C, Vandelli MA, et al. Chemico-physical investigation of tenofovir loaded polymeric nanoparticles. Int J Pharm. 2012;436(1–2):753–63.

    CAS  PubMed  Google Scholar 

  86. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Kanwar JR, Sun X, Punj V, Sriramoju B, Mohan RR, Zhou SF, et al. Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine. 2012;8(4):399–414.

    CAS  PubMed  Google Scholar 

  88. Fujiwara M, Baldeschwieler JD, Grubbs RH. Receptor-mediated endocytosis of poly(acrylic acid)-conjugated liposomes by macrophages. Biochim Biophys Acta. 1996;1278(1):59–67.

    PubMed  Google Scholar 

  89. Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 1998;37(37):12875–83.

    CAS  PubMed  Google Scholar 

  90. Nishikawa K, Arai H, Inoue K. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J Biol Chem. 1990;265(9):5226–31.

    CAS  PubMed  Google Scholar 

  91. Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 1988;9(4):356–62.

    CAS  PubMed  Google Scholar 

  92. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8.

    CAS  PubMed  Google Scholar 

  93. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31(3):438–48.

    CAS  PubMed  Google Scholar 

  95. Balkundi S, Nowacek AS, Veerubhotla RS, Chen H, Martinez-Skinner A, Roy U, et al. Comparative manufacture and cell-based delivery of antiretroviral nanoformulations. Int J Nanomedicine. 2011;6:3393–404.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Kadiu I, Nowacek A, McMillan J, Gendelman HE. Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond). 2011;6(6):975–94.

    CAS  Google Scholar 

  97. Kadiu I, Gendelman HE. Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J Proteome Res. 2011;10(7):3225–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Bale SS, Kwon SJ, Shah DA, Banerjee A, Dordick JS, Kane RS. Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery. ACS Nano. 2010;4(3):1493–500.

    CAS  PubMed  Google Scholar 

  99. Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm. 2012;9(9):2380–402.

    CAS  PubMed  Google Scholar 

  100. Huang K, Voss B, Kumar D, Hamm HE, Harth E. Dendritic molecular transporters provide control of delivery to intracellular compartments. Bioconjug Chem. 2007;18(2):403–9.

    CAS  PubMed  Google Scholar 

  101. Liu Y, Li K, Pan J, Liu B, Feng SS. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 2010;31(2):330–8.

    CAS  PubMed  Google Scholar 

  102. Micheli MR, Bova R, Magini A, Polidoro M, Emiliani C. Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat CNS Drug Discov. 2012;7(1):71–86.

    CAS  PubMed  Google Scholar 

  103. Garg M, Asthana A, Agashe HB, Agrawal GP, Jain NK. Stavudine-loaded mannosylated liposomes: in-vitro anti-HIV-I activity, tissue distribution and pharmacokinetics. J Pharm Pharmacol. 2006;58(5):605–16.

    CAS  PubMed  Google Scholar 

  104. Garg M, Dutta T, Jain NK. Reduced hepatic toxicity, enhanced cellular uptake and altered pharmacokinetics of stavudine loaded galactosylated liposomes. Eur J Pharm Biopharm. 2007;67(1):76–85.

    CAS  PubMed  Google Scholar 

  105. Kraft-Terry SD, Engebretsen IL, Bastola DK, Fox HS, Ciborowski P, Gendelman HE. Pulsed stable isotope labeling of amino acids in cell culture uncovers the dynamic interactions between HIV-1 and the monocyte-derived macrophage. J Proteome Res. 2011;10(6):2852–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Martinez-Skinner AL, Veerubhotla RS, Liu H, Xiong H, Yu F, McMillan JM, et al. Functional proteome of macrophage carried nanoformulated antiretroviral therapy demonstrates enhanced particle carrying capacity. J Proteome Res. 2013;12(5):2282–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Gautam N, Roy U, Balkundi S, Puligujja P, Guo D, Smith N, et al. Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob Agents Chemother. 2013;57(7):3110–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Nischang M, Gers-Huber G, Audige A, Akkina R, Speck RF. Modeling HIV infection and therapies in humanized mice. Swiss Med Wkly. 2012;142:13618.

    Google Scholar 

  109. Nischang M, Sutmuller R, Gers-Huber G, Audige A, Li D, Rochat MA, et al. Humanized mice recapitulate key features of HIV-1 infection: a novel concept using long-acting anti-retroviral drugs for treating HIV-1. PloS one. 2012;7(6):e38853.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Garcia-Lerma JG, Heneine W. Animal models of antiretroviral prophylaxis for HIV prevention. Curr Opin HIV AIDS. 2012;7(6):505–13.

    PubMed  Google Scholar 

  111. Van Rompay KK. Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Res. 2010;85(1):159–75.

    PubMed  Google Scholar 

  112. Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng. 2006;23(4):171–84.

    CAS  PubMed  Google Scholar 

  113. Foisy MM, Yakiwchuk EM, Hughes CA. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008;42(7):1048–59.

    CAS  PubMed  Google Scholar 

  114. Havlir DV, O’Marro SD. Atazanavir: new option for treatment of HIV infection. Clin Infect Dis. 2004;38(11):1599–604.

    CAS  PubMed  Google Scholar 

  115. Gorantla S, Poluektova L, Gendelman HE. Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci. 2012;35(3):197–208.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol. 1991;9:323–50.

    CAS  PubMed  Google Scholar 

  117. Wege AK, Melkus MW, Denton PW, Estes JD, Garcia JV. Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol. 2008;324:149–65.

    CAS  PubMed  Google Scholar 

  118. Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology. 2013;435(1):14–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Akkina R. Human immune responses and potential for vaccine assessment in humanized mice. Curr Opin Immunol. 2013;25(3):403–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Tyor WR, Power C, Gendelman HE, Markham RB. A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci U S A. 1993;90(18):8658–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Persidsky Y, Gendelman HE. Murine models for human immunodeficiency virus type 1-associated dementia: the development of new treatment testing paradigms. J Neurovirol. 2002;8(Suppl 2):49–52.

    CAS  PubMed  Google Scholar 

  122. Gorantla S, Che M, Gendelman HE. Isolation, propagation, and HIV-1 infection of monocyte-derived macrophages and recovery of virus from brain and cerebrospinal fluid. Methods Mol Biol. 2005;304:35–48.

    PubMed  Google Scholar 

  123. Poluektova L, Gorantla S, Faraci J, Birusingh K, Dou H, Gendelman HE. Neuroregulatory events follow adaptive immune-mediated elimination of HIV-1-infected macrophages: studies in a murine model of viral encephalitis. J Immunol. 2004;172(12):7610–7.

    CAS  PubMed  Google Scholar 

  124. Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, et al. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol. 2010;177(6):2938–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, et al. Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci. 2011;31(9):3148–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Epstein AA, Narayanasamy P, Dash PK, High R, Bathena SP, Gorantla S, et al. Combinatorial assessments of brain tissue metabolomics and histopathology in rodent models of human immunodeficiency virus infection. J Neuroimmune Pharmacol. 2013;8(5):1224–38.

    PubMed Central  PubMed  Google Scholar 

  127. Denton PW, Garcia JV. Mucosal HIV-1 transmission and prevention strategies in BLT humanized mice. Trends Microbiol. 2012;20(6):268–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Deruaz M, Luster AD. BLT humanized mice as model to study HIV vaginal transmission. J Infect Dis. 2013;208 Suppl 2:S131–6.

    PubMed Central  PubMed  Google Scholar 

  129. Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R, et al. HIV latency in the humanized BLT mouse. J Virol. 2012;86(1):339–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Lavender KJ, Pang WW, Messer RJ, Duley AK, Race B, Phillips K, et al. BLT-humanized C57BL/6 Rag2-/-gammac-/-CD47-/- mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood. 2013;122(25):4013–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006;108(2):487–92.

    CAS  PubMed  Google Scholar 

  132. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316–22.

    CAS  PubMed  Google Scholar 

  133. Chateau ML, Denton PW, Swanson MD, McGowan I, Garcia JV. Rectal transmission of transmitted/founder HIV-1 is efficiently prevented by topical 1 % tenofovir in BLT humanized mice. PloS one. 2013;8(3):e60024.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, et al. Rapid evolution of HIV-1 to functional CD8+ T cell responses in humanized BLT mice. Sci Transl Med. 2012;4(143):143ra98.

    Google Scholar 

  135. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, et al. Generation of HIV latency in humanized BLT mice. J Virol. 2012;86(1):630–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E, et al. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol. 2011;85(15):7582–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Denton PW, Long JM, Wietgrefe SW, Sykes C, Spagnuolo RA, Snyder OD, et al. Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS pathog. 2014;10(1):e1003872.

    Google Scholar 

  138. Deeks SG. HIV: shock and kill. Nature. 2012;487(7408):439–40.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Gendelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McMillan, J., Gendelman, H. (2014). Humanized Mice as a Platform for the Development of Long-Acting Nanoformulated Antiretroviral Therapy. In: Poluektova, L., Garcia, J., Koyanagi, Y., Manz, M., Tager, A. (eds) Humanized Mice for HIV Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1655-9_30

Download citation

Publish with us

Policies and ethics