Skip to main content

Advertisement

Log in

Neuroinflammation in Parkinson’s Disease

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

During the last two decades, a wealth of animal and human studies has implicated inflammation-derived oxidative stress and cytokine-dependent neurotoxicity in the progressive degeneration of the dopaminergic nigrostriatal pathway, the hallmark of Parkinson’s disease (PD). In this review, we discuss the various hypotheses regarding the role of microglia and other immune cells in PD pathogenesis and progression, the inflammatory mechanisms implicated in disease progression from pre-clinical and clinical studies, the recent evidence that systemic inflammation can trigger microglia activation in PD-relevant central nervous system regions, the synergism between gene products linked to parkinsonian phenotypes (α-synuclein, parkin, Nurr1, and regulator of G-protein signaling-10) and neuroinflammation in promoting neurodegeneration of the nigrostriatal pathway, and the latest update on meta-analysis of epidemiological studies on the risk-lowering effects of anti-inflammatory drug regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

RNS/ROS:

Reactive nitrogen species/reactive oxygen species

6-OHDA:

6-Hydroxydopamine

TNF:

Tumor necrosis factor

IL-1β:

Interleukin-1beta

IL-6:

Interleukin-6

IFNγ:

Interferon gamma

TGF-β:

Transforming growth factor beta

BBB:

Blood-brain barrier

SNpc:

Substantia nigra pars compacta

LPS:

Lipopolysaccharide

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

DA:

Dopaminergic

VTA:

Ventral tegmental area

NO:

Nitric oxide

LBs:

Lewy bodies

PET:

Positron emission tomography

alpha-MPT:

Alpha-methyl-p-tyrosine

RGS10:

Regulator of G-protein signaling-10

COX-1:

Cyclooxygenase-1

COX-2:

Cyclooxygenase-2

NSAIDs:

Nonsteroidal anti-inflammatory drugs

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

iNOS:

Inducible nitric oxide synthase

NF-κB:

Nuclear factor kappa beta

NBD:

NF-κB essential modifier (NEMO)-binding domain

IKKα:

IκB Kinase α subunit

IKKβ:

IκB Kinase β subunit

References

  • Aarnisalo P, Kim CH, Lee JW, Perlmann T (2002) Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. J Biol Chem 277:35118–35123

    Article  PubMed  CAS  Google Scholar 

  • Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, Sharp DS, Masaki KH, Curb JD, Petrovitch H (2003) Environmental, life-style, and physical precursors of clinical Parkinson’s disease: recent findings from the Honolulu-Asia Aging Study. J Neurol 250(Suppl 3):III30–III39

    PubMed  Google Scholar 

  • Astradsson A, Jenkins BG, Choi JK, Hallett PJ, Levesque MA, McDowell JS, Brownell AL, Spealman RD, Isacson O (2009) The blood-brain barrier is intact after levodopa-induced dyskinesias in parkinsonian primates—evidence from in vivo neuroimaging studies. Neurobiol Dis 35:348–351

    Article  PubMed  CAS  Google Scholar 

  • Austin SA, Floden AM, Murphy EJ, Combs CK (2006) Alpha-synuclein expression modulates microglial activation phenotype. J Neurosci 26:10558–10563

    Article  PubMed  CAS  Google Scholar 

  • Bartels AL, Willemsen AT, Kortekaas R, de Jong BM, de Vries R, de Klerk O, van Oostrom JC, Portman A, Leenders KL (2008) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  PubMed  CAS  Google Scholar 

  • Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS ONE 3:e1376

    Article  PubMed  CAS  Google Scholar 

  • Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 263:C1–C16

    PubMed  CAS  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  PubMed  CAS  Google Scholar 

  • Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192

    PubMed  CAS  Google Scholar 

  • Carvey PM, Chang Q, Lipton JW, Ling Z (2003) Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson’s disease. Front Biosci 8:s826–s837

    Article  PubMed  CAS  Google Scholar 

  • Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD (2005) 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J NeuroSci 22:1158–1168

    Article  PubMed  CAS  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    PubMed  CAS  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81:150–157

    Article  PubMed  CAS  Google Scholar 

  • Chae SW, Kang BY, Hwang O, Choi HJ (2008) Cyclooxygenase-2 is involved in oxidative damage and alpha-synuclein accumulation in dopaminergic cells. Neurosci Lett 436:205–209

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064

    Article  PubMed  Google Scholar 

  • Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk of Parkinson’s disease. Ann Neurol 59:988–989

    Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol (in press). doi:10.1007/s11481-009-9164-4

  • De Pablos RM, Herrera AJ, Villaran RF, Cano J, Machado A (2005) Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra. FASEB J 19:407–409

    PubMed  Google Scholar 

  • Engelhardt B (2008) The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des 14:1555–1565

    Article  PubMed  CAS  Google Scholar 

  • Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G (2007) Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Neurol 205:295–312

    Article  PubMed  CAS  Google Scholar 

  • Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14

    PubMed  CAS  Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, Hartley M, Trevino I, O’Brien DE, Casey B, Goldberg MS, Tansey MG (2008) Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci 28:10825–10834

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698

    Article  PubMed  CAS  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 104:18754–18759

    Article  PubMed  Google Scholar 

  • Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    Article  PubMed  CAS  Google Scholar 

  • Golde TE (2009) The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease. Mol Neurodegener 4:8

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS, Liu L, Li Y, Mrak RE, Barger SW (2006) Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 3:5

    Article  PubMed  CAS  Google Scholar 

  • Hancock DB, Martin ER, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK (2007) Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease. Arch Neurol 64:576–580

    Article  PubMed  Google Scholar 

  • Hernan MA, Logroscino G, Garcia Rodriguez LA (2006) Nonsteroidal anti-inflammatory drugs and the incidence of Parkinson disease. Neurology 66:1097–1099

    Article  PubMed  Google Scholar 

  • Ito S, Sawada M, Haneda M, Ishida Y, Isobe K (2006) Amyloid-beta peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line via the PI3K/Akt and/or ERK pathway. Neurosci Res 56:294–299

    Article  PubMed  CAS  Google Scholar 

  • Jang H, Boltz D, Sturm-Ramirez K, Shepherd KR, Jiao Y, Webster R, Smeyne RJ (2009) Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci USA 106:14063–14068

    Article  PubMed  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170

    PubMed  CAS  Google Scholar 

  • Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347

    PubMed  CAS  Google Scholar 

  • Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, McGeer EG, McGeer PL (2006) Alpha-synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol Aging 20:2000–2008

    CAS  Google Scholar 

  • Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1 beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation 5:8

    Article  PubMed  CAS  Google Scholar 

  • Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179

    Article  PubMed  CAS  Google Scholar 

  • Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33:85–89

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, McCoy MK, Harms AS, Ruhn KA, Gold SJ, Tansey MG (2008) Regulator of G-protein signaling 10 promotes dopaminergic neuron survival via regulation of the microglial inflammatory response. J Neurosci 28:8517–8528

    Article  PubMed  CAS  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Qin L, Wilson B, Wu X, Qian L, Granholm AC, Crews FT, Hong JS (2008) Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology 29:864–870

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10(Suppl 1):S3–S7

    Article  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 28:639–647

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in Parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev 48:251–256

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Hattori N, Kitada T, Matsumine H, Mori H, Shimura H, Kubo S, Kobayashi H, Asakawa S, Minoshima S, Shimizu N (2001) Familial Parkinson’s disease. Alpha-synuclein and parkin. Adv Neurol 86:13–21

    PubMed  CAS  Google Scholar 

  • Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  PubMed  CAS  Google Scholar 

  • Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Sawada M (2006) Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol 26:781–802

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25:945–953

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease—2007. Mov Disord 22:S335–S342

    Article  PubMed  Google Scholar 

  • Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68:325–340

    Article  PubMed  CAS  Google Scholar 

  • Owen AD, Schapira AH, Jenner P, Marsden CD (1996) Oxidative stress and Parkinson’s disease. Ann N Y Acad Sci 786:217–223

    Article  PubMed  CAS  Google Scholar 

  • Owen AD, Schapira AH, Jenner P, Marsden CD (1997) Indices of oxidative stress in Parkinson’s disease, Alzheimer’s disease and dementia with Lewy bodies. J Neural Transm Suppl 51:167–173

    PubMed  CAS  Google Scholar 

  • Puntambekar SS, Doose JM, Carson MJ (2008) Microglia: a CNS-specific tissue macrophage. In: Lane TE, Carson M, Bergmann C, Wyss-Coray T (eds) Central nervous system diseases and inflammation, 1st edn. Springer, New York, pp 1–12

    Google Scholar 

  • Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA (2007) Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 25:392–400

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AD, Stone DK, Mosley RL, Gendelman HE (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 182:4137–4149

    Article  PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Gate D, Town T (2009) CNS infiltration of peripheral immune cells: d-day for neurodegenerative disease? J Neuroimmune Pharmacol (in press). doi:10.1007/s11481-009-9166-2

  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59

    Article  PubMed  CAS  Google Scholar 

  • Samii A, Etminan M, Wiens MO, Jafari S (2009) NSAID use and the risk of Parkinson’s disease: systematic review and meta-analysis of observational studies. Drugs Aging 26:769–779

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, Isacson O (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1:6

    Article  PubMed  Google Scholar 

  • Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381

    Article  PubMed  CAS  Google Scholar 

  • Sedgwick JD, Riminton DS, Cyster JG, Korner H (2000) Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today 21:110–113

    Article  PubMed  CAS  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  PubMed  CAS  Google Scholar 

  • Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30:244–250

    Article  PubMed  CAS  Google Scholar 

  • Tanner CM (2003) Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Adv Neurol 91:133–142

    PubMed  Google Scholar 

  • Tansey MG, Wyss-Coray T (2008) Cytokines in CNS inflammation and disease. In: Lane TE, Carson M, Bergmann C, Wyss-Coray T (eds) Central nervous system diseases and inflammation, 1st edn. Springer, New York, pp 59–106

    Google Scholar 

  • Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208:1–25

    Article  PubMed  CAS  Google Scholar 

  • Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V, Przedborski S (2003a) COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 991:272–277

    Article  PubMed  CAS  Google Scholar 

  • Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003b) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100:5473–5478

    Article  PubMed  CAS  Google Scholar 

  • Tyurina YY, Kapralov AA, Jiang J, Borisenko GG, Potapovich AI, Sorokin A, Kochanek PM, Graham SH, Schor NF, Kagan VE (2006) Oxidation and cytotoxicity of 6-OHDA are mediated by reactive intermediates of COX-2 overexpressed in PC12 cells. Brain Res 1093:71–82

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Hedreen JC, Price DL (1985) Parkinson’s disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35:1215–1218

    PubMed  CAS  Google Scholar 

  • Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  • Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423:555–560

    Article  PubMed  CAS  Google Scholar 

  • Wersinger C, Sidhu A (2006) An inflammatory pathomechanism for Parkinson’s disease? Curr Med Chem 13:591–602

    Article  PubMed  CAS  Google Scholar 

  • Westin JE, Lindgren HS, Gardi J, Nyengaard JR, Brundin P, Mohapel P, Cenci MA (2006) Endothelial proliferation and increased blood-brain barrier permeability in the basal ganglia in a rat model of 3, 4-dihydroxyphenyl-L-alanine-induced dyskinesia. J Neurosci 26:9448–9461

    Article  PubMed  CAS  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100:6145–6150

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    PubMed  CAS  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19:533–542

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Dawson VL, Dawson TM (2006) Role of nitric oxide in Parkinson’s disease. Pharmacol Ther 109:33–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malú G. Tansey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JK., Tran, T. & Tansey, M.G. Neuroinflammation in Parkinson’s Disease. J Neuroimmune Pharmacol 4, 419–429 (2009). https://doi.org/10.1007/s11481-009-9176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-009-9176-0

Keywords

Navigation