Skip to main content
Log in

Low-Profile Frequency Reconfigurable Graphene-Based Dipole Antennas Loaded with Wideband Metasurface for THz Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This article provides a comprehensive analysis of low-profile, frequency-reconfigurable graphene dipole antennas for THz applications. The antenna consists of two graphene patches to form the bow-tie dipole and the wideband artificial magnetic conductor (AMC). Frequency tuning has been introduced by changing the chemical potential of graphene. The AMC has been designed to operate from 2 to 3.4 THz with a ± 90° reflection phase bandwidth of 50.39%. Using AMC surface, the total profile of the antenna has been achieved up to 0.09λ0 (where λ0 is free space wavelength) at the 0° operating frequency of 2.5 THz. In another approach, a hybrid surface combination of AMC and PEC has been used instead of AMC surface to enhance the radiation performance by reducing unwanted current distribution. The input impedance of the proposed antennas is almost stable and well-matched to the impedance of the THz source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Material

Data will be made available from the corresponding author on reasonable request.

Code Availability

The custom code or data will be made available from the corresponding author on reasonable request.

References

  1. Hillger P, Grzyb J, Jain R, Pfeiffer UR (2019) Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans Terahertz Sci Technol 9:1–19. https://doi.org/10.1109/TTHZ.2018.2884852

    Article  CAS  Google Scholar 

  2. Siegel PH (2004) Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech 52:2438–2447. https://doi.org/10.1109/TMTT.2004.835916

    Article  Google Scholar 

  3. Graf UU, Honingh CE, Jacobs K, Stutzki J (2015) Terahertz heterodyne array receivers for astronomy. J Infrared, Millimeter, Terahertz Waves 36:896–921. https://doi.org/10.1007/s10762-015-0171-7

    Article  Google Scholar 

  4. Cooper KB, Dengler RJ, Llombart N et al (2011) THz imaging radar for standoff personnel screening. IEEE Trans Terahertz Sci Technol 1:169–182. https://doi.org/10.1109/TTHZ.2011.2159556

    Article  Google Scholar 

  5. Piesiewicz R, Kleine-Ostmann T, Krumbholz N et al (2007) Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Antennas Propag Mag 49:24–39. https://doi.org/10.1109/MAP.2007.4455844

    Article  Google Scholar 

  6. Gregory IS, Baker C, Tribe WR et al (2005) Optimization of photomixers and antennas for continuous-wave terahertz emission. IEEE J Quantum Electron 41:717–728. https://doi.org/10.1109/JQE.2005.844471

    Article  CAS  Google Scholar 

  7. Correas-Serrano D, Gomez-Diaz JS (2017) Graphene-based antennas for terahertz systems: a review. http://arxiv.org/abs/1704.00371

  8. Chen PY, Huang H, Akinwande D, Alù A (2014) Graphene-based plasmonic platform for reconfigurable terahertz nanodevices. ACS Photonics 1:647–654. https://doi.org/10.1021/ph500046r

    Article  CAS  Google Scholar 

  9. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101. https://doi.org/10.1021/nn406627u

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Liu H, Wang S et al (2019) Optical transport properties of graphene surface plasmon polaritons in mid-infrared band. Curr Comput-Aided Drug Des. https://doi.org/10.3390/cryst9070354

    Article  Google Scholar 

  11. Dong HM, Huang F, Xu W (2018) Tunable terahertz optical properties of graphene in dc electric fields. Phys E Low-dimensional Syst Nanostructures 97:52–56. https://doi.org/10.1016/j.physe.2017.10.017

    Article  CAS  Google Scholar 

  12. Zangeneh AMR, Farmani A, Mozaffari MH, Mir A (2022) Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method. Diam Relat Mater 125:109005. https://doi.org/10.1016/j.diamond.2022.109005

    Article  CAS  Google Scholar 

  13. Farmani A, Mir A, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl Surf Sci 453:358–364. https://doi.org/10.1016/j.apsusc.2018.05.092

    Article  CAS  Google Scholar 

  14. Farmani A, Zarifkar A, Sheikhi MH, Miri M (2017) Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices Microstruct 112:404–414. https://doi.org/10.1016/j.spmi.2017.09.051

    Article  CAS  Google Scholar 

  15. Farmani H, Farmani A, Biglari Z (2020) A label-free graphene-based nanosensor using surface plasmon resonance for biomaterials detection. Phys E Low-dimensional Syst Nanostructures 116:113730. https://doi.org/10.1016/j.physe.2019.113730

    Article  CAS  Google Scholar 

  16. Cai Y, Da XuK, Guo R et al (2018) Graphene-based plasmonic tunable dual-band bandstop filter in the far-infrared region. IEEE Photonics J 10:1–9. https://doi.org/10.1109/JPHOT.2018.2876681

    Article  Google Scholar 

  17. Rahmanshahi M, Noori Kourani S, Golmohammadi S et al (2021) A tunable perfect THz metamaterial absorber with three absorption peaks based on nonstructured graphene. Plasmonics 16:1665–1676. https://doi.org/10.1007/s11468-021-01432-7

    Article  CAS  Google Scholar 

  18. Tamagnone M, Gómez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012) Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl Phys Lett. https://doi.org/10.1063/1.4767338

    Article  Google Scholar 

  19. Cabellos-Aparicio A, Llatser I, Alarcón E et al (2015) Use of terahertz photoconductive sources to characterize tunable graphene RF plasmonic antennas. IEEE Trans Nanotechnol 14:390–396. https://doi.org/10.1109/TNANO.2015.2398931

    Article  CAS  Google Scholar 

  20. Tamagnone M, Diaz JSG et al (2013) High-impedance frequency-agile THz dipole antennas using graphene. In: 7th European Conference on Antennas and Propagation (EuCAP). IEEE, pp 533–536

  21. Tamagnone M, Diaz JSG, Mosig J, Perruisseau-Carrier J (2013) Hybrid graphene-metal reconfigurable terahertz antenna. In: 2013 IEEE MTT-S International Microwave Symposium Digest (MTT). IEEE, pp 1–3. https://doi.org/10.1109/MWSYM.2013.6697756

  22. Koohi MZ, Neshat M (2015) Evaluation of graphene-based terahertz photoconductive antennas. Trans F: Nanotech 22:1299–1305

    Google Scholar 

  23. Perruisseau-Carrier J, Tamagnone M, Gomez-Diaz JS et al (2013) Resonant and leaky-wave reconfigurable antennas based on graphene plasmonics. In: 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, pp 136–137. https://doi.org/10.1109/APS.2013.6710729

  24. Qu D, Shafai L, Foroozesh A (2006) Improving microstrip patch antenna performance using EBG substrates. IEE Proc - Microwaves, Antennas Propag 153:558–563. https://doi.org/10.1049/ip-map:20060015

    Article  Google Scholar 

  25. Azad MZ, Ali M (2008) Novel wideband directional dipole antenna on a mushroom like EBG structure. IEEE Trans Antennas Propag 56:1242–1250. https://doi.org/10.1109/TAP.2008.922673

    Article  Google Scholar 

  26. Foroozesh A, Shafai L (2011) Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas. IEEE Trans Antennas Propag 59:4–20. https://doi.org/10.1109/TAP.2010.2090458

    Article  Google Scholar 

  27. Li M, Li QL, Wang B et al (2018) A low-profile dual-polarized dipole antenna using wideband AMC reflector. IEEE Trans Antennas Propag 66:2610–2615. https://doi.org/10.1109/TAP.2018.2806424

    Article  Google Scholar 

  28. Georgiadis A et al (2013) Microwave and millimeter wave circuits and systems: emerging design, technologies and applications. John Wiley and Sons Ltd

  29. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys. https://doi.org/10.1063/1.2891452

    Article  Google Scholar 

  30. He XY, Li R (2014) Comparison of graphene-based transverse magnetic and electric surface plasmon modes. IEEE J Sel Top Quantum Electron 20:62–67. https://doi.org/10.1109/JSTQE.2013.2257991

    Article  CAS  Google Scholar 

  31. Llatser I, Kremers C, Chigrin DN et al (2012) Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering 21:946–953

    Google Scholar 

  32. Vasić B, Isić G, Gajić R (2013) Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies. J Appl Phys. https://doi.org/10.1063/1.4773474

    Article  Google Scholar 

  33. Lin IT, Lai YP, Wu KH, Liu JM (2014) Terahertz optoelectronic property of graphene: substrate-induced effects on plasmonic characteristics. Appl Sci 4:28–41. https://doi.org/10.3390/app4010028

    Article  CAS  Google Scholar 

  34. Nikitin AY, Alonso-González P, Hillenbrand R (2014) Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials. Nano Lett 14:2896–2901. https://doi.org/10.1021/nl500943r

    Article  CAS  PubMed  Google Scholar 

  35. Bludov YV, Vasilevskiy MI, Peres NMR (2010) Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene. EPL Europhys Lett 92:68001. https://doi.org/10.1209/0295-5075/92/68001

    Article  CAS  Google Scholar 

  36. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813. https://doi.org/10.1021/nn301888e

    Article  CAS  PubMed  Google Scholar 

  37. Farhat M, Guenneau S, Bağcı H (2013) Exciting graphene surface plasmon polaritons through light and sound interplay. Phys Rev Lett 111:237404. https://doi.org/10.1103/PhysRevLett.111.237404

    Article  CAS  PubMed  Google Scholar 

  38. Ju L, Geng B, Horng J et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634. https://doi.org/10.1038/nnano.2011.146

    Article  CAS  PubMed  Google Scholar 

  39. Gustavsen B, Semlyen A (1999) Rational approximation of frequency domain responses by vector fitting. IEEE Trans Power Deliv 14:1052–1061. https://doi.org/10.1109/61.772353

    Article  Google Scholar 

  40. Gustavsen B (2006) Improving the pole relocating properties of vector fitting. IEEE Trans Power Deliv 21:1587–1592. https://doi.org/10.1109/TPWRD.2005.860281

    Article  Google Scholar 

  41. Antonini G (2003) Spice equivalent circuits of frequency-domain responses. IEEE Trans Electromagn Compat 45:502–512. https://doi.org/10.1109/TEMC.2003.815528

    Article  Google Scholar 

  42. Semlyen A, Gustavsen B (2009) A half-size singularity test matrix for fast and reliable passivity assessment of rational models. IEEE Trans Power Deliv 24:345–351. https://doi.org/10.1109/TPWRD.2008.923406

    Article  Google Scholar 

  43. Gustavsen B (2008) Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues. IEEE Trans Power Deliv 23:2278–2285. https://doi.org/10.1109/TPWRD.2008.919027

    Article  Google Scholar 

  44. Tamagnone M, Gómez-Díaz JS, Mosig JR, Perruisseau-Carrier J (2012) Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J Appl Phys. https://doi.org/10.1063/1.4768840

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [Arun Kumar Varshney] and [Nagendra P. Pathak]. The first draft of the manuscript was written by [Arun Kumar Varshney] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nagendra P. Pathak.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, A.K., Pathak, N.P. & Sircar, D. Low-Profile Frequency Reconfigurable Graphene-Based Dipole Antennas Loaded with Wideband Metasurface for THz Applications. Plasmonics 17, 2351–2363 (2022). https://doi.org/10.1007/s11468-022-01720-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01720-w

Keywords

Navigation