Skip to main content

Advertisement

Log in

Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Titanium nitride (TiN) metadevices as perfect absorbers are studied using finite-difference time-domain (FDTD) simulations. In this paper, we demonstrate a metastructure including a top silica (SiO2) layer, two layers of TiN nano-ribbon arrays, a SiO2 dielectric layer, and a TiN film to realize efficient solar energy harvesting. We theoretically optimize the geometrical parameters of each active layer to achieve high absorption rates with an average value of up to 95% within an ultra-wide band from 0.4 to 1.8 microns, covering over 93% of total energy in the solar spectrum. Our detailed analysis of the electric field enhancement indicates that such ultra-broadband high absorption in the visible/near-infrared ranges can be attributed to surface plasmon resonances, Fabry-Perot resonances, and strong plasmon hybridization between adjacent TiN nano-ribbons. Together with refractory properties of TiN and SiO2, the designed metadevice may exhibit great potential in efficient solar energy harvesting applications, particularly in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8(a)
Fig. 9(a)
Fig. 10(a)

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805–809

    Article  CAS  Google Scholar 

  2. Wu S, Xiong G, Yang H, Gong B, Tian Y, Xu C, Wang Y, Fisher T, Yan J, Cen K, Luo T, Tu X, Bo Z, Ostrikov K (2019) Multifunctional solar waterways: Plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Advanced Energy Materials 9(30):1901286

    Article  Google Scholar 

  3. Bhardwaj S, Pathak NK, Ji A, Uma R, Sharma RP (2017) Tunable properties of surface plasmon resonance of metal nanospheroid: graphene plasmon interaction. Plasmonics 12(1):193–201

    Article  CAS  Google Scholar 

  4. Lu R, Xu L, Ge Z, Li R, Xu J, Yu L, Chen K (2016) Improved efficiency of silicon nanoholes/gold nanoparticles/organic hybrid solar cells via localized surface plasmon resonance. Nanoscale Res Lett 11(1):160

  5. Manai L, Dridi Rezgui B, Benabderrahmane Zaghouani R, Barakel D, Torchio P, Palais O, Bessais B (2016) Tuning of light trapping and surface plasmon resonance in silver nanoparticles/C-Si structures for solar cells. Plasmonics 11(5):1273–1277

    Article  CAS  Google Scholar 

  6. Pang Y, Zhang J, Ma R, Qu Z, Lee E, Luo T (2020) Solar–thermal water evaporation: a review. ACS Energy Letters 5(2):437–456

    Article  CAS  Google Scholar 

  7. Lee E, Huang D, Luo T (2020) Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces. Nature Communications 11(1):2404

    Article  CAS  Google Scholar 

  8. Wang BX, Zhai X, Wang G-Z, Huang W-Q, Wang L-L (2015) A novel dual-band terahertz metamaterial absorber for a sensor application. J Appl Phys 117(1):014504

  9. Wang BX, Wang G, Wang L, Zhai X (2016) Design of a five-band terahertz absorber based on three nested split-ring resonators. IEEE Photonics Technology Letters 28(3):307–310

    Article  CAS  Google Scholar 

  10. Wang BX, Wang G-Z, Sang T (2016) Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J Phys D Appl Phys 49(16):165307

  11. Wang BX, Wang G-Z, Wang L-L (2016) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 11(2):523–530

  12. Wang BX (2017) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE Journal of Selected Topics in Quantum Electronics 23(4):1–7

    Google Scholar 

  13. Wang BX, Wang G-Z, Sang T, Wang LL (2017) Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure. Scientific Reports 7(1):41373

    Article  CAS  Google Scholar 

  14. Wang BX, Tang C, Niu Q, He Y, Chen T (2019) Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers. Nanoscale Res Lett 14(1):64

  15. Wang BX, He Y, Lou P, Huang WQ, Pi F (2020) Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators. Results in Physics 16:102930

    Article  Google Scholar 

  16. Wang BX, He Y, Lou P, Xing W (2020) Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Advances 2(2):763–769

    Article  CAS  Google Scholar 

  17. Gao M, Zhu L, Peh CK, Ho GW (2019) Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science 12(3):841–864

    Article  CAS  Google Scholar 

  18. Maier SA (2007) Plasmonics: Fundamentals and applications. In. p 245

  19. Wang BX, Tang C, Niu Q, He Y, Chen R (2019) A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot. Nanoscale Advances 1(9):3621–3625

    Article  CAS  Google Scholar 

  20. Li W, Guler U, Kinsey N, Naik GV, Boltasseva A, Guan J, Shalaev VM, Kildishev AV (2014) Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials 26(47):7959–7965

    Article  CAS  Google Scholar 

  21. Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Materials Letters 63(17):1525–1527

    Article  CAS  Google Scholar 

  22. Patsalas P, Kalfagiannis N, Kassavetis S (2015) Optical properties and plasmonic performance of titanium nitride. Materials 8(6):3128–3154

    Article  CAS  Google Scholar 

  23. Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt Mater Express 1(6):1090–1099

    Article  CAS  Google Scholar 

  24. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Advanced Materials 25(24):3264–3294

    Article  CAS  Google Scholar 

  25. Guler U, Shalaev VM, Boltasseva A (2015) Nanoparticle plasmonics: going practical with transition metal nitrides. Materials Today 18(4):227–237

    Article  CAS  Google Scholar 

  26. Habib A, Florio F, Sundararaman R (2018) Hot carrier dynamics in plasmonic transition metal nitrides. Journal of Optics 20(6):064001

    Article  Google Scholar 

  27. Cortie MB, Giddings J, Dowd A (2010) Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21(11):115201

    Article  CAS  Google Scholar 

  28. Ishii S, Shinde SL, Sugavaneshwar RP, Kaur M, Nagao T (2018) Harvesting sunlight with titanium nitride nanostructures. In: 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1-4 Aug. pp 1286-1289

  29. Guler U, Naik GV, Boltasseva A, Shalaev VM, Kildishev AV (2012) Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Applied Physics B 107(2):285–291

    Article  CAS  Google Scholar 

  30. Guler U, Ndukaife JC, Naik GV, Nnanna AGA, Kildishev AV, Shalaev VM, Boltasseva A (2013) Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Letters 13(12):6078–6083

    Article  CAS  Google Scholar 

  31. Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2(4):478–489

    Article  CAS  Google Scholar 

  32. Wang J, Zhang W, Zhu M, Yi K, Shao J (2015) Broadband perfect absorber with titanium nitride nano-disk array. Plasmonics 10(6):1473–1478

    Article  CAS  Google Scholar 

  33. Gao H, Peng W, Liang Y, Chu S, Yu L, Liu Z, Zhang Y (2019) Plasmonic broadband perfect absorber for visible light solar cells application. Plasmonics 15:573–580

    Article  Google Scholar 

  34. Ishii S, Shinde SL, Jevasuwan W, Fukata N, Nagao T (2016) Hot electron excitation from titanium nitride using visible light. ACS Photonics 3(9):1552–1557

    Article  CAS  Google Scholar 

  35. Kamakura R, Murai S, Ishii S, Nagao T, Fujita K, Tanaka K (2017) Plasmonic–photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region. ACS Photonics 4(4):815–822

    Article  CAS  Google Scholar 

  36. Podder S, Pal AR (2019) Plasmonic visible-NIR photodetector based on hot electrons extracted from nanostructured titanium nitride. Journal of Applied Physics 126(8):083108

    Article  Google Scholar 

  37. Liang Q, Fu Y, Xia X, Wang L, Gao R (2018) Titanium nitride nano-disk arrays-based metasurface as a perfect absorber in the visible range. Modern Physics Letters B 32(01):1750365

    Article  CAS  Google Scholar 

  38. Gao H, Peng W, Cui W, Chu S, Yu L, Yang X (2019) Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Optical Materials 97:109377

    Article  CAS  Google Scholar 

  39. Juneja S, Shishodia MS (2019) Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers. Optics Communications 433:89–96

    Article  CAS  Google Scholar 

  40. Palik ED (1985) Handbook of optical constants of solids. Academic Press, Orlando

    Google Scholar 

  41. Haynes WM (2014) CRC handbook of chemistry and physics. CRC press

  42. Gonçalves PAD, Xiao S, Peres NMR, Mortensen NA (2017) Hybridized plasmons in 2D nanoslits: from graphene to anisotropic 2D materials. ACS Photonics 4(12):3045–3054

    Article  Google Scholar 

  43. Nikitin AY, Low T, Martin-Moreno L (2014) Anomalous reflection phase of graphene plasmons and its influence on resonators. Physical Review B 90(4):041407

    Article  CAS  Google Scholar 

  44. Liu Z, Aydin K (2016) Localized surface plasmons in nanostructured monolayer black phosphorus. Nano Letters 16(6):3457–3462

    Article  CAS  Google Scholar 

  45. Li M, Shen H, Zhuang L, Chen D, Liang X (2014) SiO2 antireflection coatings fabricated by electron-beam evaporation for black monocrystalline silicon solar cells. International Journal of Photoenergy 2014:1–5

    Google Scholar 

  46. Fang C, Liu Y, Han G, Shao Y, Zhang J, Hao Y (2018) Localized plasmon resonances for black phosphorus bowtie nanoantennas at terahertz frequencies. Opt Express 26(21):27683–27693

    Article  CAS  Google Scholar 

  47. Meng Y-L, Tan J, Xu K, Chen J, Jin G-J, Sun Y, Wang L-L, Zuo Z, Qin H-Y, Zhao Y, Guo J (2019) Salisbury screen optical color filter with ultra-thin titanium nitride film. Appl Opt 58(24):6700–6705

    Article  CAS  Google Scholar 

  48. Ahangarani S, Sabour Rouhaghadam AR, Azadi M (2016) A review on titanium nitride and titanium carbide single and multilayer coatings deposited by plasma assisted chemical vapor deposition. Int J Eng Technol 29(5):677–687

Download references

Acknowledgments

The authors thank Dr. Eungkyu Lee for the help and discussion involved in this work.

Funding

The authors received the financial support from University of Nevada, Reno startup fund, The University of Texas at Dallas startup fund, and National Science Foundation (Grant No. CBET-1937949 and CBET-1937923).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Under the supervision of G.X., S.W. performed simulations and theoretical calculations. G.X., S.W., and T.L. analyzed the data and interpreted the results. S.W. wrote the first draft of the manuscript, and all authors contributed to the writing of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Guoping Xiong.

Ethics declarations

Competing Interest

The authors declare that they have no competing interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.17 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Luo, T. & Xiong, G. Plasmon Hybridization-Induced Ultra-broadband High Absorption from 0.4 to 1.8 Microns in Titanium Nitride Metastructures. Plasmonics 16, 799–809 (2021). https://doi.org/10.1007/s11468-020-01324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01324-2

Keywords

Navigation