Skip to main content
Log in

Broadband Perfect Absorber with Titanium Nitride Nano-disk Array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A broadband metamaterial absorber (MA) based on the titanium nitride (TiN) nano-disk array is studied using finite difference time domain simulations. The semiconducting indium tin oxide (ITO) thin film is introduced as the space layer in this sandwiched structure. Utilizing the symmetrical geometry of the MA structure, polarization insensitivity of the broadband absorption was gained. The absorber with TiN nano-disk array shows a peak absorbance of 99 % and larger than 98 % from 560 to 675 nm by numerical simulation. This compact design may have potential applications in the plasmonic sensing and photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen HT, O’Hara JF, Azad AK, Taylor AJ (2011) Manipulation of terahertz radiation using metamaterials. Laser Photon Rev 5(4):513–533

    Article  CAS  Google Scholar 

  2. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24(23):OP98–OP120

    CAS  Google Scholar 

  3. Isenstadt A, Xu J (2013) Subwavelength metal optics and antireflection. Electron Mater Lett 9(2):125–132

    Article  CAS  Google Scholar 

  4. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4(2):107–113

    Article  CAS  Google Scholar 

  5. Pu MB, Feng Q, Hu CG, Luo XG (2012) Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7(4):733–738

    Article  CAS  Google Scholar 

  6. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104-1–251104-3

    Article  Google Scholar 

  7. Kats MA, Sharma D, Lin J, Genevet P, Blanchard R, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F (2012) Ultra-thin perfect absorber employing a tunable phase change material. Appl Phys Lett 101(22):221101-1–221101–5

    Article  Google Scholar 

  8. Cao T, Wei CW, Simpson RE, Zhang L, Cryan MJ (2014) Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci Rep 4:3955

    Google Scholar 

  9. Wang W, Wu S, Reinhardt K, Lu Y, Chen S (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10(6):2012–2018

    Article  CAS  Google Scholar 

  10. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband, polarization-independent resonant light absorption using ultrathin, plasmonic super absorbers. Nat Commun 2:517

    Article  Google Scholar 

  11. Ko H, Ko DH, Cho Y, Han IK (2014) Broadband light absorption using a multilayered gap surface plasmon resonator. Appl Phys A Mater Sci Process 116(3):857–861

    Article  CAS  Google Scholar 

  12. Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express 1(6):1090–1099

    Article  CAS  Google Scholar 

  13. Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2(4):478–489

    Article  CAS  Google Scholar 

  14. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294

    Article  CAS  Google Scholar 

  15. Li W, Guler U, Kinsey N, Naik GV, Boltasseva A, Guan J, Shalaev VM, Kildishev A (2014) Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv Mater 26(47):7959–7965

    Article  CAS  Google Scholar 

  16. Abb M, Sepúlveda B, Chong MH, Muskens OL (2012) Transparent conducting oxides for active hybrid metamaterial devices. J Optics 14(11):114007-1–114007-7

    Article  Google Scholar 

  17. Rajak S, Ray M (2014) Comparative study of plasmonic resonance in transparent conducting oxides: ITO and AZO. J Optics 43(3):231–238

    Article  Google Scholar 

  18. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Boston, Mass

    Google Scholar 

  19. Elsherbeni A, Demir V (2009) The finite-difference time-domain method for electromagnetics with MATLAB simulations. SciTech Publishing, Inc., Raleigh, NC

    Google Scholar 

  20. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  21. Rottkay KV, Rubin M, Ozer N (1995) Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings. Mater Res Soc Symp Proc 403:551–556

    Article  Google Scholar 

  22. Wang J, Fan C, Ding P, He J, Cheng Y, Hu W, Cai G, Liang E, Xue Q (2012) Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt Express 20(14):14871–14878

    Article  Google Scholar 

  23. Zhu J, Li JJ, Deng XC, Zhao JW (2011) Multifactor-controlled non-monotonic plasmon shift of ordered gold nanodisk arrays: shape-dependent interparticle coupling. Plasmonics 6(2):261–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, W., Zhu, M. et al. Broadband Perfect Absorber with Titanium Nitride Nano-disk Array. Plasmonics 10, 1473–1478 (2015). https://doi.org/10.1007/s11468-015-9962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9962-x

Keywords

Navigation