Skip to main content
Log in

High-Performance Graphene Patch Antenna with Superstrate Cover for Terahertz Band Application

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene-based patch antennas are rapidly gaining interests in communication technologies for high-speed data transmission due to the exciting properties of graphene material. Herein, we designed a high-performance circular patch antenna for terahertz band application with graphene as the radiating patch. For the protection of patch against environmental jeopardies and enhancement of antenna performance, a thin layer of Teflon (εr = 2.1) as superstrate is used, and overall antenna performance is evaluated. The designed antenna operates around 7 THz with amazing S11 of − 75.66 dB and VSWR of 1.0003. The designed antenna is highly efficient with radiation efficiency of 97.21% and a very high gain of 7.286 dB. The designed antenna is also analysed for different dielectric materials used as the covering superstrate layer. Where the introduction of higher dielectric constant materials as superstrate layer increases the antenna gain significantly, it also reduces the bandwidth and efficiency of the designed antenna at terahertz band. An antenna gain of 7.392 dB is achieved for glass (εr = 4.82) as superstrate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J, Kallfass I (2013) Wireless sub-THz communication system with high data rate. Nat Photonics 7:977-981

    Article  CAS  Google Scholar 

  2. Akyildiz IF, Jornet JM, Han C (2014) Terahertz band: next frontier for wireless communications. Phys Commun 12:16-32

    Article  Google Scholar 

  3. Bin L et al (2018) Research progress on terahertz technology and its application in agriculture. Trans Chin Soc Agric Eng 34(2):1-9

    Google Scholar 

  4. Deb S, Ganguly A, Pande PP, Belzer B, Heo D (2012) Wireless NoC as interconnection backbone for multicore chips: promises and challenges. in IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2(2):228-239. https://doi.org/10.1109/JETCAS.2012.2193835

    Article  Google Scholar 

  5. Nishizawa J-i, Sasaki T, Suto K, Yamada T, Tanabe T, Tanno T, Sawai T, Miura Y (2005) THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator. Optic Commun 244(1-6):469-474

    Article  CAS  Google Scholar 

  6. Naftaly M, Foulds AP, Miles RE, Davies AG (2005) Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties. Int J Infrared Millimet Waves 26(1):55-64

    Article  CAS  Google Scholar 

  7. Alharbi, Hamed K et al (2016) Diced and grounded broadband bow-tie antenna with tuning stub for resonant tunnelling diode terahertz oscillators, IET Microw. Antennas Propag 11.3:310-316

    Google Scholar 

  8. Gonzalez A et al (2017) Terahertz corrugated horns (1.25-1.57 THz): design, Gaussian modeling, and measurements. IEEE Trans Terahertz Sci Technol 7.1:42-52

    Google Scholar 

  9. Han K et al (2010) Terahertz Yagi-Uda antenna for high input resistance. J. Infrared, Millim. Terahertz Waves 31.4:441-454

    Google Scholar 

  10. Mak K-M, So K-K, Lai H-W, Luk K-M (2017) A magnetoelectric dipole leaky-wave antenna for millimeter wave application. IEEE Trans Antenn Propag 65(12):6395-6402

    Article  Google Scholar 

  11. Lin G, Huang F, Tang X (2014) A novel integrated MEMS helix antenna for terahertz applications. Optik-Inter J Light Electron Optic 125(1):101-103

    Article  Google Scholar 

  12. Hussein A. Abdulnabi, Refat T. Hussein, Raad S. Fyath, 0.1-10 Thz single port log periodic antenna design based on Hilbert graphene artificial magnetic conductor, (2006)

  13. Walther M, Cooke D, Sherstan C, Hajar M, Freeman M, Hegmann F (2007) Terahertz conductivity of thin gold films at the metalinsulator percolation transition. Physical Review B 76(12):125408

    Article  CAS  Google Scholar 

  14. Abadal S, Llatser I, Mestres A, Lee H E. Alarc’on, A. Cabellosaparicio, Time-domain analysis of graphene-based miniaturized antennas for ultra-short-range impulse radio communications. IEEE Trans. Commun 63(4, 2015):1470-1482

  15. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109-162

    Article  CAS  Google Scholar 

  16. Llatser I, Kremers C, Chigrin D, Jornet JM, Lemme MC, Cabellos-Aparicio A, Alarc’on E (2012) Radiation characteristics of tunable graphennas in the terahertz band. Radioeng. J. 21(4)

  17. Nicoloas GA, David RJ (1984) Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Trans Antennas Propag 32:807-816

    Article  Google Scholar 

  18. Anand SS, Kumar DS, Wu RJ, Chavali M (2014) Graphene nanoribbon based terahertz antenna on polyimide substrate, Optik. Science Direct 125:5546-5549

    CAS  Google Scholar 

  19. Mrunalini S, Manoharan A (2017) Dual-band re-configurable graphene-based patch antenna in terahertz band for wireless network-on-chip applications. In: IET Microwaves, Antennas & Propagation, Volume 11, Issue 14, pp 2104-2108. https://doi.org/10.1049/iet-map.2017.0415

    Chapter  Google Scholar 

  20. George JN, Madhan MG (2017) Analysis of single band and dual band graphene based patch antenna for terahertz region. Phys E Low Dimension Syst Nanostruct 94(October):126-131

    Article  CAS  Google Scholar 

  21. Bala R, Marwaha A (2015) “Development of computational model for tunable characteristics of graphene based triangular patch antenna in THz regime” Springer on Journal of Computational Electronics, ISSN- 1569-8025, indexed by SCI , Thomson Reuter journal list, Impact Factor 1.520, https://doi.org/10.1007/s10825-015-0761-6, Print ISSN 1569-8025, Online ISSN 1572-8137, pp 1.6, online 2015

  22. Khan MAK, Shaem TA, Alim MA (2019) Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation. Optik 194:194. https://doi.org/10.1016/j.ijleo.2019.163012

    Article  CAS  Google Scholar 

  23. Thampy AS, Darak MS, Dhamodharan SK (Oct. 2015) Analysis of graphene-based optically transparent patch antenna for terahertz communications. Physica E: Low-dimensional Systems and Nanostructures 66:67-73

    Article  CAS  Google Scholar 

  24. Khan MAK, Shaem TA, Alim MA (2020) Graphene patch antennas with different substrate shapes and materials. Optik 202:163700. https://doi.org/10.1016/j.ijleo.2019.163700

    Article  CAS  Google Scholar 

  25. Bala R, Marwaha A (2015) Characterization of graphene for performance enhancement of patch antenna in THz region. Optik - Int. J. Light Electron Opt. https://doi.org/10.1016/j.ijleo.2015.11.029

  26. Younssi M, Jaoujal A, Yaccoub MHD, El Moussaoui A, Aknin N (2013) Study of a microstrip antenna with and without superstrate for terahertz frequency. Int J Innov Appl Stud 2(4):369-371

    Google Scholar 

  27. Dubinov AA, Ya Aleshkin V, Mitin V et al (2011) Terahertz surface plasmons in optically pumped graphene structures. J Phys, Condens Matter 23(14):145302

    Article  CAS  Google Scholar 

  28. Jornet JM, Akyildiz IF (December 2013) Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. in IEEE Journal on Selected Areas in Communications 31(12):685-694

    Article  Google Scholar 

  29. Jablan M, Buljan H, Soljaˇci’c M (2009) Plasmonics in graphene at infrared frequencies. Physical review B 80(24):245435

    Article  CAS  Google Scholar 

  30. Han MY, Barbaros O, Zhang Y et al (2007) Energy band-gap engineering of graphene nanoribbon. Phys Rev Lett 98:206805-206809

    Article  CAS  Google Scholar 

  31. Hanson GW (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56(3):747-757

    Article  Google Scholar 

  32. Mikhailov S, Ziegler K (2007) A new electromagnetic mode in graphene. Phys Rev Lett 99:016803

    Article  CAS  Google Scholar 

  33. Llatser I, Kremers C, Cabellos-Aparicio A, Jornet JM, Alarcón E, Chigrin DN (2012) Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures - Fundamentals and Applications 10(4):353-358

    Article  Google Scholar 

  34. Tongay S, Berke K, Lemaitre M et al (2011) Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22:425701

    Article  CAS  Google Scholar 

  35. Xu C, Jin Y, Yang L, Yang J, Jiang X (2012) Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt Express 20(20):22398-22405

    Article  CAS  Google Scholar 

  36. Efetov DK, Kim P (2010) Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 105:256805

    Article  CAS  Google Scholar 

  37. George PA, Strait J, Dawlaty J (2008) And others, ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett 8(12):4248-4251

    Article  CAS  Google Scholar 

  38. TRUSHIN M (2011) Schliemann. J Anisotropic photoconductivity in graphene EPL 96:37006

    Google Scholar 

  39. Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9(7):2730-2735

    Article  CAS  Google Scholar 

  40. Ryzhii V, Ryzhii M, Otsuji T (2007) Negative dynamic conductivity of graphene with optical pumping. J Appl Phys 101:083114

    Article  CAS  Google Scholar 

  41. Fang XY, Yu XX, Zheng HM, Jin HB, Wang L, Cao MS (2015) Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Physics Letters, Section A: General, Atomic and Solid State Physics 379(37):2245-2251. https://doi.org/10.1016/j.physleta.2015.06.063

    Article  CAS  Google Scholar 

  42. Nirmalraj PN, Lutz T, Kumar S, Duesberg GS, Boland JJ (2011) Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett 11(1):16-22. https://doi.org/10.1021/nl101469d

    Article  CAS  Google Scholar 

  43. Weiland T (1977) Discretization method for the solution of Maxwell’s equations for six-component fields. AEU-Archiv Fur Elektronik Und Ubertragungstechnik 31(3):116-120

    Google Scholar 

  44. Clemens M, Weiland T (2001) Discrete electromagnetism with the finite integration technique. Prog Electromagn Res 32:65-87. https://doi.org/10.2528/PIER00080103

    Article  Google Scholar 

  45. Weiland T (1996) Time domain electromagnetic field computation with finite difference methods. Int J Numer Model 9:295-319. https://doi.org/10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8

    Article  Google Scholar 

  46. Vandenbosch GAE, Vasylchenko A (2011) A practical guide to 3D electromagnetic software tools. In Microstrip Antennas. InTech. https://doi.org/10.5772/14756

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdul Kaium Khan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A.K., Ullah, M.I., Kabir, R. et al. High-Performance Graphene Patch Antenna with Superstrate Cover for Terahertz Band Application. Plasmonics 15, 1719–1727 (2020). https://doi.org/10.1007/s11468-020-01200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01200-z

Keywords

Navigation