Skip to main content
Log in

A Nanoscale Modification of Materials at Thermoplasmonic Laser-Induced Backside Wet Etching of Sapphire

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Laser-induced backside wet etching using water solution of plasmon precursor (AgNO3) as an absorbing medium provides effective structuring of such a complex material as sapphire. At the same time, this process is accompanied by the formation of silver nanoparticles and a significant modification of a surface layer of sapphire. Hybrid plasmon structures are formed on the surface of sapphire. In this paper, the structure and phase composition of surface layer formed during the transformation of the materials in the process of etching have been studied using electron microscopy methods, electron diffraction, and EDX analysis; possibilities of creating of new plasmon nanostructures have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698

    Article  CAS  Google Scholar 

  2. Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquids for micro-/nanostructure generation. J Photochem Photobiol C: Photochem Rev 13:204–223

    Article  CAS  Google Scholar 

  3. Amendola V, Meneghetti M (2013) What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15:3027–3046

    Article  CAS  PubMed  Google Scholar 

  4. Makarov GN (2013) Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography. Phys Usp 56:643–682

    Article  CAS  Google Scholar 

  5. Ionin AA, Kudryashov SI, Samokhin AA (2017) Material surface ablation produced by ultrashort laser pulses. Phys Usp 60:149–160

    Article  CAS  Google Scholar 

  6. Juodkazis S, Nishimura K, Misawa H, Ebisui T, Waki R, Matsuo S, Okada T (2006) Control over the crystalline state of sapphire. Adv Mater 18:1361–1364

    Article  CAS  Google Scholar 

  7. Vailionis A, Gamaly EG, Mizeikis V, Yang W, Rode AV, Juodkazis S (2011) Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nat Commun 2:445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Niino H, Yabe A (1999) One-step microfabrication of fused silica by laser ablation of an organic solution. Appl Phys A 68:111–113

    Article  CAS  Google Scholar 

  9. Wang J, Niino H, Yabe A (1999) Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching. Appl Phys A 69:S271–S273

    Article  CAS  Google Scholar 

  10. Niino H, Yasui Y, Ding X, Narazaki A, Sato T, Kawaguchi Y, Yabe A (2003) Surface micro-fabrication of silica glass by excimer laser irradiation of organic solvent. J Photochem Photobiol A: Chem 158:179–182

    Article  CAS  Google Scholar 

  11. Vass C, Budai J, Schay Z, Hopp B (2010) Interpretation and modeling of laser-induced backside wet etching procedure. J Laser Micro/Nanoeng 5:43–47

    Article  CAS  Google Scholar 

  12. Zimmer K, Bӧhme R, Ehrhardt M, Rauschenbach B (2010) Mechanism of backside etching of transparent materials with nanosecond UV-lasers. Appl Phys A 101:405–410

    Article  CAS  Google Scholar 

  13. Zimmer K, Ehrhardt M, Bӧhme R (2012) Laser-induced backside wet etching: processes, results, and applications. In: Yang G (ed) Laser ablation in liquids: principles and applications in the preparation of nanomaterials. Pan Stanford Publishing, Singapore, pp 1013–1123

    Chapter  Google Scholar 

  14. Tsvetkov MY, Yusupov VI, Minaev NV, Timashev PS, Golant KM, Bagratashvili VN (2016) Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass. Laser Phys Lett 13:106001

    Article  CAS  Google Scholar 

  15. Tsvetkov MY, Minaev NV, Akovantseva AA, Timashev PS, Muslimov AE, Kanevskii VM (2019) Thermoplasmonic laser-induced backside wet etching of sapphire. Quantum Electron 49:133–140

    Article  CAS  Google Scholar 

  16. Tsvetkov MY, Yusupov VI, Minaev NV, Akovantseva AA, Timashev PS, Golant KM, Chichkov BN, Bagratashvili VN (2017) On the mechanisms of single-pulse laser-induced backside wet etching. Opt Laser Technol 88:17

    Article  CAS  Google Scholar 

  17. Tsvetkov MY, Yusupov VI, Timashev PS, Golant KM, Minaev NV, Tsypina SI, Bagratashvili VN (2017) On the role of supercritical water in laser-induced backside wet etching of glass. Russ J Phys Chem B 11:1061–1069

    Article  CAS  Google Scholar 

  18. Muslimov AE, Asadchikov VE, Butashin AV, Vlasov VP, Deryabin AN, Roshchin BS, Sulyanov SN, Kanevsky VM (2016) Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies. Cryst Rep 61:730–743

    Article  CAS  Google Scholar 

  19. https://www.gatan.com

  20. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  21. Gromov DG, Savitskiy AI, Pavlova LM, Borgardt NI, Grishina YS, Dubkov SV, Trifonov AY (2014) Formation of gold and silver cluster arrays using vacuum-thermal evaporation on a non-heated substrate. Proc SPIE 9440:94400E

    Google Scholar 

  22. Gromov DG, Pavlova LM, Savitskiy AI, Trifonov AY (2015) Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum. Phys Solid State 57:173–180

    Article  CAS  Google Scholar 

  23. Zimmer K, Bӧhme R (2008) Laser-induced backside wet etching of transparent materials with organic and metallic absorbers. Laser Chem:170632. https://doi.org/10.1155/2008/170632

  24. Zimmer K, Ehrhardt M, Böhme R (2010) Simulation of laser-induced backside wet etching of fused silica with hydrocarbon liquids. J Appl Phys 107:034908

    Article  CAS  Google Scholar 

  25. Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: Synthesis and mechanism. J Photochem Photobiol C Photochem Rev 10:33–56

    Article  CAS  Google Scholar 

  26. Olenin AY, Lisichkin GV (2011) Metal nanoparticles in condensed media: preparation and the bulk and surface structural dynamics. Russ Chem Rev 80:605–630

    Article  CAS  Google Scholar 

  27. Kreibig U, Gartz M, Hilger A, Hövel H, Quinten M, Wagner D (2005) A short survey of optical properties of metal nanostructures. In: Kassing R et al (eds) Functional Properties of Nanostructured Materials. Springer, pp 75–110

  28. Tsvetkov MY, Bagratashvili VN, Panchenko VY, Rybaltovskiy AO, Samoilovich MI, Timofeev MA (2011) Plasmon resonances of silver nanoparticles in silica based meso-structured films. Nanotechnol Russ 6:619–624

  29. Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J. Quantitat. Spectroscopy & Radiat. Transfer 111:1–35

    Article  CAS  Google Scholar 

  30. Amendola V, Polizzi S, Meneghetti M (2007) Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir 23:6766–6770

    Article  CAS  PubMed  Google Scholar 

  31. Singh R, Soni RK (2015) Synthesis of rattle-type Ag@Al2O3 nanostructure by laser-induced heating of Ag and Al nanoparticles. Appl Phys A 121:261–271

    Article  CAS  Google Scholar 

  32. Singh R, Soni RK (2019) Laser-induced heating synthesis of hybrid nanoparticles. In: Mohapatra S, Nguyen TA, Nguyen-Tri P (eds) Noble Metal - Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications. Elsevier, pp 195–238

  33. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  CAS  Google Scholar 

  34. Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  PubMed  Google Scholar 

  35. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012

    Article  CAS  Google Scholar 

  36. McHale JM, Auroux A, Perrotta AJ, Navrotsky A (1997) Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277:788–791

    Article  CAS  Google Scholar 

  37. Wortmann D, Gottmann J, Brandt N, Horn-Solle H (2008) Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching. Opt Expr 16:1517–1522

    Article  Google Scholar 

  38. Hörstmann-Jungemann M, Gottmann J, Keggenhoff M (2010) 3D-Microstructuring of sapphire using fs-laser irradiation and selective etching. J Laser Micro/Nanoeng 5:145–149

    Article  CAS  Google Scholar 

  39. Capuano L, Pohl R, Tiggelaar RM, Berenschot JW, Gardeniers JGE, Römer GRBE (2018) Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etching. Opt Expr 26:29283–29295

    Article  CAS  Google Scholar 

  40. Lorazo P, Lewis LJ, Meunier M (2006) Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys Rev B 73:134108

    Article  CAS  Google Scholar 

  41. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  PubMed  Google Scholar 

  42. Apuzzo A, Février M, Salas-Montiel R, Bruyant A, Chelnokov A, Lérondel G, Dagens B, Blaize S (2013) Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide. Nano Lett 13:1000–1006

    Article  CAS  PubMed  Google Scholar 

  43. Kim J (2012) Joining plasmonics with microfluidics: from convenience to inevitability. Lab on a Chip 19:3611–3623

    Article  CAS  Google Scholar 

  44. Polavarapu L, Pérez-Juste J, Xu Q-H, Liz-Marzán LM (2014) Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J Mater Chem C 2:7460–7476

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS in part of the TEM and SEM investigation and development of microstructuring technologies and the Russian Foundation for Basic Research in part of the design of the laser facility (Grant No. 18-02-00420 A) and in part of the studies on sapphire etching processes (Grant No. 18-29-06056 MK). Electron microscopy investigations were carried out using equipment of the Shared Research Center of the Institute of Crystallography, Russian Academy of Sciences (project RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Tsvetkov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigalina, O.M., Khmelenin, D.N., Atanova, A.V. et al. A Nanoscale Modification of Materials at Thermoplasmonic Laser-Induced Backside Wet Etching of Sapphire. Plasmonics 15, 599–608 (2020). https://doi.org/10.1007/s11468-019-01091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01091-9

Keywords

Navigation