Skip to main content
Log in

Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sapphire, with extremely high hardness, high-temperature stability and wear resistance, often corroded in molten KOH at 300 °C after processing. The fabrication of microstructures on sapphire substrate performed by femtosecond laser irradiation combined with KOH solution chemical etching at room temperature is presented. It is found that this method reduces the harsh requirements of sapphire corrosion. After femtosecond irradiation, the sapphire has a high corrosion speed at room temperature. Through the analysis of Raman spectrum and XRD spectrum, a novel insight of femtosecond laser interaction with sapphire (α-Al2O3) is proposed. Results indicated that grooves on sapphire surface were formed by the lasers ablation removal, and the groove surface was modified in a certain depth. The modified area of the groove surface was changed from α-Al2O3 to γ-Al2O3. In addition, the impacts of three experimental parameters, laser power, scanning velocities and etching time, on the width and depth of microstructures are investigated, respectively. The modified area dimension is about 2 μm within limits power and speed. This work could fabricate high-quality arbitrary microstructures and enhance the performance of sapphire processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Ishizuki, K. Furuya, J. Hand Surg. 16, 922 (1991)

    Article  Google Scholar 

  2. T.C. Chen, R.B. Darling, J. Mater. Process. Technol. 169, 214 (2005)

    Article  Google Scholar 

  3. A. Shamir, A.A. Ishaay, Appl. Surf. Sci. 270, 763 (2013)

    Article  ADS  Google Scholar 

  4. K. Yin, J. Duan, X. Sun, C. Wang, Z. Luo, Appl. Phys. A 119, 69 (2015)

    Article  ADS  Google Scholar 

  5. J. Bai, G. Cheng, X. Long, Y. Wang, W. Zhao, G. Chen, R. Stoian, R. Hui, Opt. Express 20, 15053 (2012)

    Google Scholar 

  6. A. Said, M. Dugan, P. Bado, Opt. Express 10, 2120 (2004)

    Google Scholar 

  7. S. Luo, T. Chang, H. Tsai, Microelectron. Eng. 98, 448 (2012)

    Article  Google Scholar 

  8. Y. Bellouard, A. Said, P. Bado, Opt. Express 13, 6635 (2005)

    Article  ADS  Google Scholar 

  9. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71, 3329 (1997)

    Article  ADS  Google Scholar 

  10. M. Will, S. Nolte, B. Chichkov, A. Tünnermann, Appl. Opt. 41, 4360 (2002)

    Article  ADS  Google Scholar 

  11. D. Wortmann, M. Ramme, J. Gottmann, Opt. Express 15, 10149 (2007)

    Article  ADS  Google Scholar 

  12. C. Cerullo, R. Osellame, S. Tacche, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. DeSilvestri, Opt. Lett. 27, 1938 (2002)

    Article  ADS  Google Scholar 

  13. S. Matsuo, Y. Shichijo, T. Tomita, S. Hashimoto, JLMN 2, 114 (2007)

    Article  Google Scholar 

  14. K. Sugioka, Y. Cheng, K. Midorikawa, Appl. Phys. A 81, 1 (2005)

    Article  ADS  Google Scholar 

  15. C. Hnatovsky, R.S. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P.B. Corkum, Appl. Phys. 84, 47 (2006)

    Article  Google Scholar 

  16. D. Wortmann, J. Gottmann, N. Brandt, H. Horn-Solle, Opt. Express 16, 1517 (2008)

    Article  ADS  Google Scholar 

  17. R. Vilar, S.P. Sharma, A. Almeida, L.T. Cangueiro, V. Oliveira, Appl. Surf. Sci. 288, 313 (2014)

    Article  ADS  Google Scholar 

  18. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry (Academia, Praha, 1973)

    Google Scholar 

  19. A. Aminzadeh, H. Sarikhani-Fard, Spectrochim Acta A 55, 1421 (1999)

    Article  ADS  Google Scholar 

  20. P. Fang, M. He, Y. Xie, M. Luo, Spectrosc. Spectr. Anal. 26, 2039 (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51475482, 51475481, 51335011 and 91323301) and the Fundamental Research Funds for the Central Universities of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Hu, Y., Sun, X. et al. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser. Appl. Phys. A 123, 99 (2017). https://doi.org/10.1007/s00339-016-0664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0664-9

Keywords

Navigation