Skip to main content

Plasmonic Demultiplexer Based on Induced Transparency Resonances: Analytical and Numerical Study

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems (ICEERE 2020)

Abstract

We study both analytically and numerically the possibility to realize a simple plasmonic Y-shaped demultiplexer made of an input line and two output lines. Each line consisting of a metal-insulator-metal (MIM) waveguide contains a specific resonator made of two stubs grafted at a given position from the input line. The two stubs on each line induce a plasmonic induced transparency (PIT) resonance in the transmission spectra characterized by a resonance squeezed between two zeros. The idea consists in coinciding at a given wavelength, a resonance on one line with a transmission zero on the other line. We give closed-form expressions of the geometrical parameters allowing the selective transfer of a single mode in one line without affecting the other line. The analytical results, obtained by means of the Green’s function method, are confirmed by numerical simulation using finite element method via Comsol Multiphysics software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–641

    Article  Google Scholar 

  2. Zhang J, Hernandez G, Zhu Y (2008) Slow light with cavity electromagnetically induced transparency. Opt Lett 33:46–48

    Article  Google Scholar 

  3. Heinze G, Hubrich C, Halfmann T (2013) Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys Rev Lett 111:033601–033605

    Article  Google Scholar 

  4. Alotaibi Hessa MM, Sanders BC (2016) Enhanced nonlinear susceptibility via double-double electromagnetically induced transparency. Phys Rev A 94:053832–0538311

    Article  Google Scholar 

  5. Yang X, Yu M, Kwong DL, Wong CW (2009) All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys Rev Lett 102:173902

    Article  Google Scholar 

  6. Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel AP, Ustinov AV, Anlage SM, Soukoulis CM (2011) Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 107:043901

    Article  Google Scholar 

  7. Jung H, Jo H, Lee W, Kim B, Choi H, Kang MS, Lee H (2019) Terahertz metamaterials: electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv Opt Mater 7:1801205

    Article  Google Scholar 

  8. Fan Y, Qiao T, Zhang F, Fu Q, Dong J, Kong B, Li H (2017) An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci Rep 7:40441

    Article  Google Scholar 

  9. Al-Wahsh H, El Boudouti EH, Djafari-Rouhani B, Akjouj A, Mrabti T, Dobrzynski L (2008) Evidence of Fano-like resonances in mono-mode magnetic circuits. Phys Rev B 78:075401

    Article  Google Scholar 

  10. Quotane I, El Boudouti EH, Djafari-Rouhani B (2018) Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal. Phys Rev B 97:024304

    Article  Google Scholar 

  11. Mouadili A, El Boudouti EH, Soltani A, Talbi A, Akjouj A, Djafari-Rouhani B (2013) Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits. J Appl Phys 113:164101

    Article  Google Scholar 

  12. Mouadili A, El Boudouti EH, Soltani A, Talbi A, Djafari-Rouhani B, Akjouj B, Haddadi K (2014) Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model. J Phys Condens Matter 26:505901

    Article  Google Scholar 

  13. Wen M, Wang L, Zhai X, Lin Q, Xia S (2017) Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide. Europhys Lett 116:44004

    Article  Google Scholar 

  14. Xia SX, Zhai X, Wang LL, Sun B, Liu JQ, Wen SC (2016) Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt Express 24:17886–17899

    Article  Google Scholar 

  15. Noual A, Amrani M, El Boudouti EH, Pennec Y, Djafari-Rouhani B (2019) Terahertz multi-plasmon induced reflection and transmission and sensor devices in a graphene-based coupled nanoribbons resonators. Opt Commun 440:1–13

    Article  Google Scholar 

  16. Noual A, Amrani M, El Boudouti EH, Pennec Y, Djafari-Rouhani B (2019) Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons. Appl Phys A 125:184

    Article  Google Scholar 

  17. Huang Y, Min C, Veronis G (2011) Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency. Appl Phys Lett 99:143117

    Article  Google Scholar 

  18. Piao X, Sunkyu Y, Park N (2012) Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20:18994

    Article  Google Scholar 

  19. Chen J, Wang C, Zhang R, Xiao J (2012) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37:5133

    Article  Google Scholar 

  20. Noual A, Akjouj A, Pennec Y, Gillet JN, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys 11:103020

    Article  Google Scholar 

  21. Mouadili A, El Boudouti EH, Soltani A, Talbi A, Haddadi K, Akjouj A, Djafari-Rouhani B (2019) Photonic demultiplexer based on electromagnetically induced transparency resonances. J Phys D Appl Phys 52:075101

    Article  Google Scholar 

  22. Vasseur JO, Akjouj A, Dobrzynski L, Djafari-Rouhani B, El Boudouti EH (2004) Surf Sci Rep 54:1

    Article  Google Scholar 

  23. Lin C, Swillam MA, Helmy AS (2012) Analytical model for metal-insulator-metal mesh waveguide architectures. J Opt Soc Am B 29:3157

    Article  Google Scholar 

  24. Zhu Q, Wang Z (2013) The Green’s function method for metal-dielectric-metal SPP waveguide network. EPL 103:17004

    Article  Google Scholar 

  25. Zhu Q, Wang Z (2019) Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks. Opt Express 27:303

    Article  Google Scholar 

  26. Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Solvacic M (2016) Bound states in the continuum. Nat Rev Mater 1:16048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madiha Amrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amrani, M., Khattou, S., Noual, A., El Boudouti, E.H., Djafari-Rouhani, B. (2021). Plasmonic Demultiplexer Based on Induced Transparency Resonances: Analytical and Numerical Study. In: Hajji, B., Mellit, A., Marco Tina, G., Rabhi, A., Launay, J., Naimi, S. (eds) Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems. ICEERE 2020. Lecture Notes in Electrical Engineering, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-15-6259-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6259-4_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6258-7

  • Online ISBN: 978-981-15-6259-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics