Skip to main content
Log in

A Nanoscale Fano Resonator by Graphene-Gold Dipolar Interference

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A nanoscale Fano resonator composed of a hybrid graphene disk-gold ring combination is reported in this letter. The inner narrow dipolar resonance of a discrete state induced by graphene interferes with the outside broad dipolar resonance of a continuum state induced by gold, thus forming an asymmetric Fano transparency within the absorption window. The metastructure exhibits a wide tunable band along with an excellent refractive index sensing capability of 2344 nm/RIU. The geometry adjustment modulates the spectral response giving chances to the equivalent of electromagnetically induce transparency. Moreover, the group index exceeds 760 within the transparency window enabling a potential use in slow light or light storage applications. The analytic analysis is in accordance with the numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866

    Article  CAS  Google Scholar 

  2. Papasimakis N, Zheludev N I (2009) Metamaterial-induced transparency:sharp fano resonances and slow light. Opt Photon News 20:22

    Article  CAS  Google Scholar 

  3. Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  PubMed  Google Scholar 

  4. Miroshnichenko A E, Flach S, Kivshar Y S (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257

    Article  CAS  Google Scholar 

  5. Fan S, Suh W, Joannopoulos J D (2003) Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 20:569

    Article  Google Scholar 

  6. Peng B, Özdemir S K, Chen W, Nori F, Yang L (2014) What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat Commun 5:5082

    Article  CAS  PubMed  Google Scholar 

  7. Rahmani M, Luk’yanchuk B, Hong M (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7:329

    Article  CAS  Google Scholar 

  8. Boller K-J, Imamoğlu A, Harris S E (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H (2017) Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system. Appl Phys Lett 111:081105

    Article  Google Scholar 

  10. Wei B, Jian S (2017) Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect. J Opt 19:115001

    Article  Google Scholar 

  11. Wei B, Jian S (2017) Analogue of electromagnetically-induced-transparency based on graphene nanotube waveguide. J Phys D: Appl Phys 50:355101

    Article  Google Scholar 

  12. Wei B, Liu H, Ren G, Yang Y, Ye S, Pei L, Jian S (2017) Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect. Phys Lett A 381:160

    Article  CAS  Google Scholar 

  13. Wei B, Jian S (2017) Analog of midinfrared electromagnetically induced-transparency and slow rainbow trapping light based on graphene nanoribbon-coated silica substrate. J Nanophotonics 11:026011

    Article  Google Scholar 

  14. Wei B, Jian S (2017) Multiple modes plasmon-induced-transparency and slow light effect in a compact graphene coated nanowire waveguide system. Opt Commun 402:66

    Article  CAS  Google Scholar 

  15. Horng J, Chen C-F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F (2011) Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83:165113

    Article  Google Scholar 

  16. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291

    Article  CAS  PubMed  Google Scholar 

  17. Jablan M, Buljan H, Soljačič M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  Google Scholar 

  18. Bolotin KI, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351

    Article  CAS  Google Scholar 

  19. Chen P-Y, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5:5855

    Article  CAS  PubMed  Google Scholar 

  20. Falkovsky LA, Pershoguba S S (2007) Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B 76:153410

    Article  Google Scholar 

  21. Hanson G W (2008) Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 56:747

    Article  Google Scholar 

  22. Chae D-H, Utikal T, Weisenburger S, Giessen H, Klitzing K V, Lippitz M, Smet J (2011) Excitonic fano resonance in free-standing graphene. Nano Lett 11:1379–1382

    Article  CAS  PubMed  Google Scholar 

  23. Emani N K, Chung T-F, Kildishev A V, Shalaev V M, Chen Y P, Boltasseva A (2014) Electrical modulation of fano resonance in plasmonic nanostructures using graphene. Nano Lett 14:78–82

    Article  CAS  PubMed  Google Scholar 

  24. Zheng G, Zou X, Chen Y, Xu L, Rao W (2017) Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications. Opt Mater 66:171

    Article  CAS  Google Scholar 

  25. Zhang Y, Li T, Zeng B, Zhang H, Lv H, Huang X, Zhang W, Azad A K (2015) A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale 7:12682

    Article  CAS  PubMed  Google Scholar 

  26. Wei B, Yang Y, Yao S, Xiao H, Jian S (2017) Directional energy focusing on monolayer graphene coupling system. Appl Phys B 123:70

    Article  Google Scholar 

  27. Amin M, Farhat M, Bağcı H (2013) A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci Rep 3:2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buzheng Wei S J (2017) Realization of super-reflection and cloaking based on graphene–silica metamaterial. Opt Eng 56:56

    Google Scholar 

  29. Binfeng Y, Guohua H, Jiawei C, Yiping C (2014) Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer. Plasmonics 9:691

    Article  Google Scholar 

  30. Geim A, Novoselov K (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  31. Novoselov K, Fal’ko V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  PubMed  Google Scholar 

  32. Hanson G W (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302

    Article  Google Scholar 

  33. Lee S H, Choi M, Kim T-T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C-G, Choi S-Y, Zhang X, Min B (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11:936–941

    Article  CAS  PubMed  Google Scholar 

  34. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806

    Article  CAS  PubMed  Google Scholar 

  35. Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004

    Article  Google Scholar 

  36. Falkovsky L A, Varlamov A A (2007) Space-time dispersion of graphene conductivity. Eur Phys J B 56:281

    Article  CAS  Google Scholar 

  37. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier S A (2009) Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652

    Article  CAS  PubMed  Google Scholar 

  38. Wu C, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buzheng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Jian, S. A Nanoscale Fano Resonator by Graphene-Gold Dipolar Interference. Plasmonics 13, 1889–1895 (2018). https://doi.org/10.1007/s11468-018-0703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0703-9

Keywords

Navigation