Skip to main content
Log in

Interparticle Coupling Effects of Two Quantum Dots System on the Transport Properties of a Single Plasmon

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Transport properties of a single plasmon interacting with two quantum dots (QDs) system coupled to one-dimensional surface plasmonic waveguide are investigated theoretically via the real-space approach. We mainly focus on the coupling effects of the two QDs on the transmission properties of a single incident plasmon. We demonstrated that switching of a single plasmon can be achieved by controlling the interparticle distance, the interparticle coupling strength, and the QD-waveguide coupling strength, as well as spectral detuning. We also showed that the coupling between the continuum excitations and the discrete excitations results in the Fano-type transmission spectrum. The transport properties of a single plasmon interacting with such a two direct coupled QDs system could find the applications in the design of plasmonic nanodevices, such as single photon switching and nanomirrors, and in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang DE, Sørensen AS, Demler EA, Lukin MD (2007) A single-photon transistor using nanoscale surface plasmons. Nat. Phys 3:807

    Article  CAS  Google Scholar 

  2. Gibbs HM (1985) Optical bistability: controlling light with light. Academic, Orlando

    Google Scholar 

  3. O’Brien JL (2007) Optical quantum computer. Science 318:1567

    Article  Google Scholar 

  4. Bouwmeester D, Ekert A, Zeilinger A (2000) The physics of quantum information. Springer, Berlin

    Book  Google Scholar 

  5. Han X, Hu S, Guo Q, Wang H-F, Zhu A-D, Zhang S (2015) Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dotmicrocavity coupled system. Sci. Rep. 5:12790

    Article  CAS  Google Scholar 

  6. Wilk T, Webster SC, Kuhn A, Rempe G (2007) Single-atom single photon quantum interface. Science 317:488

    Article  CAS  Google Scholar 

  7. Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Gotzinger S, Sandoghdar V (2009) A single-molecule optical transistor. Nature (London) 460:76

    Article  CAS  Google Scholar 

  8. Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S (2010) Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the fano effect on photon statistics. Phys. Rev. Lett 105:263601

    Article  CAS  Google Scholar 

  9. Purcell EM (1946) Proceeding of the american physics society. Phys. Rev. 69:674

    Article  Google Scholar 

  10. Leistikow MD, Mosk AP, Yeganegi E, Huisman SR, Lagendijk A, Vos WL (2011) Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap. Phys. Rev. Lett. 107:193903

    Article  CAS  Google Scholar 

  11. Childress L, Sørensen AS, Lukin MD (2004) Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69:042302

    Article  Google Scholar 

  12. Sørensen AS et al (2004) Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett 92:063601

    Article  Google Scholar 

  13. Wallraff A et al (2004) Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431:162

    Article  CAS  Google Scholar 

  14. Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Quantum optics with surface plasmons. Phys. Rev. Lett 97:053002

    Article  CAS  Google Scholar 

  15. Fedutik Y, Temnov VV, Schöps O, Woggon U (2007) Exiton-plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett 99:136802

    Article  CAS  Google Scholar 

  16. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguide. Phys. Rev. Lett 93:137404

    Article  Google Scholar 

  17. Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7:2784

  18. Shen J-T, Fan S (2005) Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30:2001

    Article  CAS  Google Scholar 

  19. Shen J-T, Fan S (2005) Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95:213001

    Article  Google Scholar 

  20. Shen J-T, Fan S (2009) Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79(2):023837

    Article  Google Scholar 

  21. Birnbaum KM, Boca A, Miller R, Boozer AD, Northup TE, Kimble HJ (2005) Photon blockade in an optical cavity with one trapped atom. Nature 436:87

    Article  CAS  Google Scholar 

  22. Schell AW, Kaschke J, Fischer J, Henze R et al (2013) Three-dimensional quantum photonic elements based on single nitrogen vacancy-centers in laser-written microstructures. Sci. Rep 3:1577

    Article  Google Scholar 

  23. Li Q, Wei H, Xu H-X (2014) Resolving single plasmons generated by multiquantum-emitters on a silver nanowire. Nano Lett. 14(6):3358–3363

    Article  CAS  Google Scholar 

  24. Shen Y, Shen J-T (2012) Nanoparticle sensing using whispering-gallery-mode resonators plasmonic and ralei scatters. Phys Rev A 85:013801

  25. Kim N-C, Li J-B, Yang Z-J, Hao Z-H, Wang Q-Q (2010) Switching of a single propagating plasmon by two quantum dots system. Appl. Phys. Lett 97:061110

    Article  Google Scholar 

  26. Kim N-C, Ko M-C (2015) Switching of a single photon by two Λ-Type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide. Plasmonics (Springer) 10:605–610

  27. Kim N-C, Ko M-C, Wang Q-Q (2015) Single plasmon switching with n quantum dots system coupled to one-dimensional waveguide. Plasmonics(Springer) 10:611–615

    CAS  Google Scholar 

  28. Cheng M-T, Ma X-S, Luo Y-Q, Wang P-Z, Zhao G-X (2011) Entanglement generation and quatum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits. Appl. Phys. Lett. 99:223509

    Article  Google Scholar 

  29. Kim N-C, Ko M-C et al (2016) Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle–semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27:465703(9pp

    Article  Google Scholar 

  30. Kim N-C, Ko M-C, Choe C-I (2015) Scattering of a single plasmon by two-level and v-type three-level quantum dot systems coupled to 1D waveguide. Plasmonics(Springer) 10:1447

    Google Scholar 

  31. Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ (2011) Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106:020501

    Article  CAS  Google Scholar 

  32. Wei H, Xu H-X (2013) Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics 2:155–169

    Google Scholar 

  33. Liu MZ (2009) Exciton of dark plasmon in metal nano-particles by a localized emitter. Phys. Rev. Lett. 102:107401

    Article  Google Scholar 

  34. Alemayehu NK et al (2015) Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystems. J. Appl. Phys 118:113101

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program on Key Science Research of DPR of Korea (Grant No. 131-00). This work was also supported by the National Program on Key Science Research of China (2011CB922201) and the NSFC (11174229, 11204221, 11374236, and 11404410) and the Foundation of Talent Introduction of Central South University of Forestry and Technology (104-0260).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nam-Chol Kim or Qu-Quan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NC., Ko, MC., Choe, SI. et al. Interparticle Coupling Effects of Two Quantum Dots System on the Transport Properties of a Single Plasmon. Plasmonics 13, 1089–1095 (2018). https://doi.org/10.1007/s11468-017-0608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0608-z

Keywords

Navigation