Skip to main content
Log in

Single Plasmon Switching with n Quantum Dots System Coupled to One-Dimensional Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Switching of a single plasmon interacting with n equally spaced quantum dots coupled to one-dimensional surface plasmonic waveguide is investigated theoretically via the real-space approach. We showed that the transmission and reflection of a single plasmon can be switched on or off by dynamically tuning and changing the number of the equal transition frequencies of the quantum dots. Increasing the number of doped quantum dots having the equal transition frequencies results in the wide–band reflection of a single plasmon and the complete transmission peaks near the resonant frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wallraff A, Schuster DI, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin SM, Schoelkopf RJ (2004) Nature 431:162

    Article  CAS  Google Scholar 

  2. Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ (2007) Rev Mod Phys 79:135

    Article  CAS  Google Scholar 

  3. Chang DE, Sørensen AS, Demler EA, Lukin MD (2007) Nat Phys 3:807

    Article  CAS  Google Scholar 

  4. Shen J-T, Fan S (2005) Opt Lett 30:2001

    Article  CAS  Google Scholar 

  5. Shen J-T, Fan S (2005) Phys Rev Lett 95:213001

    Article  Google Scholar 

  6. Shen J-T, Fan S (2009) Phys Rev A 79:023837

    Article  Google Scholar 

  7. Gong ZR, Ian H, Zhou L, Sun CP (2008) Phys Rev A 78:053806

    Article  Google Scholar 

  8. Zumofen G, Mojarad NM, Sandoghdar V, Agio M (2008) Phys Rev Lett 101:180404

    Article  CAS  Google Scholar 

  9. Rostami G, Shahabadi M, Kusha A, Rostami A (2012) Appl Opt 51:5019

    Article  Google Scholar 

  10. Cheng M-T, Luo Y-Q, Wang P-Z, Zhao G-X (2010) Appl Phys Lett 97:191903

    Article  Google Scholar 

  11. Shen Y, Shen J-T (2012) Phys Rev A 85:013801

    Article  Google Scholar 

  12. Cheng M-T, Ma X-S, Ding M-T, Luo Y-Q, Zhao G-X (2012) Phys Rev A 85:053840

    Article  Google Scholar 

  13. Dayan B, Parkins AS, Aoki T, Ostby EP, Vahala KJ, Kimble HJ (2008) Science 319:1062

    Article  CAS  Google Scholar 

  14. Kim N-C, Li J-B, Liu S-D, Cheng M-T, Hao Z-H (2010) Chin Phys Lett 27:034211

    Article  Google Scholar 

  15. Aoki T, Dayan B, Wilcut E, Bowen WP, Parkins AS, Kippenberg TJ, Vahala KJ, Kimble HJ (2006) Nature 443:671

    Article  CAS  Google Scholar 

  16. Birnbaum KM, Boca A, Miller R, Boozer AD, Northup TE, Kimble HJ (2005) Nature 436:87

    Article  CAS  Google Scholar 

  17. Bradford M, Shen J-T (2012) Phys Rev A 85:043814

    Article  Google Scholar 

  18. Tsoi TS, Law CK (2008) Phys Rev A 78:063832

    Article  Google Scholar 

  19. Tsoi TS, Law CK (2009) Phys Rev A 80:033823

    Article  Google Scholar 

  20. Kim N-C, Li J-B, Yang Z-J, Hao Z-H, Wang Q-Q (2010) Appl Phys Lett 97:061110

    Article  Google Scholar 

  21. Chen W, Chen G-Y, Chen Y-N (2010) Opt Express 18:10360

    Article  CAS  Google Scholar 

  22. Wei H, Xu H-X (2013) Nanophotonics 2:155–169

    Google Scholar 

  23. Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Phys Rev Lett 97:053002

    Article  CAS  Google Scholar 

  24. Fedutik Y, Temnov VV, Schops O, Woggon U, Artemyev MV (2007) Phys Rev Lett 99:136802

    Article  CAS  Google Scholar 

  25. Gong HM, Zhou L, Su XR, Xiao S, Liu SD, Wang QQ (2009) Adv Funct Mater 19:298

    Article  CAS  Google Scholar 

  26. Yang Z-J, Kim N-C, Li J-B, Cheng M-T, Liu S-D, Hao Z-H, Wang Q-Q (2010) Opt Express 18:4006

    Article  CAS  Google Scholar 

  27. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Nature 450:402

    Article  CAS  Google Scholar 

  28. Wei H, Ratchford D, Li X, Xu HX, Shih CK (2009) Nano Lett 9:4168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Key Project for Frontier Research on Quantum Information and Quantum Optics of Ministry of Education of D. P. R of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Chol Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NC., Ko, MC. & Wang, QQ. Single Plasmon Switching with n Quantum Dots System Coupled to One-Dimensional Waveguide. Plasmonics 10, 611–615 (2015). https://doi.org/10.1007/s11468-014-9846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9846-5

Keywords

Navigation