Skip to main content
Log in

Highly-Tunable Magnetic and Electric Responses in the Perforated Au-SiO2-Si Multilayer Nanoshells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we have demonstrated that the perforated Au-SiO2-Si multilayer nanoshells can support additional magnetic response besides electric response, where Si core provides additional magnetic response, unlike regular metal-dielectric-metal multilayer nanoshells exhibiting pure electric response. Dipole radiative enhancement is used to analyze magnetic and electric responses of the perforated Au-SiO2-Si multilayer nanoshells and the spectral features of nanoshells can be used to quantitatively characterize by the coupled oscillator model. The magnetic and electric responses of the perforated Au-SiO2-Si multilayer nanoshells are dependent sensitively on the incident angles of light due to the symmetry breaking and can be easily tuned by means of varying the geometry. The unique capability of the perforated Au-SiO2-Si multilayer nanoshells exhibiting magnetic-electric responses can provide various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL (2012) Active nanoplasmonic metamaterials. Nat Materials 11:573–584

    Article  CAS  Google Scholar 

  2. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  3. Huang Y, Xiao JJ, Gao L (2015) Antiboding and bonding lasing modes with low gain threshold in nonlocal metallic nanoshell[J]. Opt Express 23:8818–8828

    Article  CAS  Google Scholar 

  4. Huang ML, Zhang YF, Du CL, Peng S, Shi DN (2016) Plasmon peak sensitivity investigation of individual Cu and Cu@Cu2O core–shell nanoparticle sensors[J]. Plasmonics 11:1197–1200

    Article  CAS  Google Scholar 

  5. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4:1521–1528

    Article  CAS  Google Scholar 

  6. Hao F, Sonnefraud Y, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  7. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701

    Article  CAS  Google Scholar 

  8. Qian J, Wang WD, Li YD, Xu JJ, Sun Q (2012) Optical extinction properties of perforated gold-silica-gold multilayer nanoshells. J Phys Chem C 116:10349–10355

    Article  CAS  Google Scholar 

  9. Ma YW, Zhang LH, Wu ZW, Yi MF, Zhang J, Jian GS (2015) The study of tunable local surface plasmon resonances on Au-Ag and Ag-Au core-chell alloy nanostructure particles with DDA method. Plasmonics 10:1791–1800

    Article  CAS  Google Scholar 

  10. Chern RL (2008) Magnetic and surface plasmon resonances for periodic lattices of plasmonic split-ring resonators. Phys Rev B 78:085116

    Article  Google Scholar 

  11. Zhou J, Koschny, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM (2005) Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95:223902

    Article  CAS  Google Scholar 

  12. Yang ZJ, Zhang ZS, Hao ZH, Wang QQ (2012) Strong bonding magnetic plasmon hybridizations in double split-ring resonators. Opt Lett 37:3675–3677

    Article  Google Scholar 

  13. Liu N, Liu H, Zhu S, Giessen H (2009) Stereometamaterials. Nat Photonics 3:157–162

    Article  CAS  Google Scholar 

  14. Shafiei F, Monticone F, Hartsfield T, Alù A, Li XQ (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotech 8:95–99

    Article  CAS  Google Scholar 

  15. Nazir A, Panaro S, Zaccaria RP, Liberale C, Angelis FD, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Lett 14:3166–3171

    Article  CAS  Google Scholar 

  16. Sheikholeslami SN, Garcíaetxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett 11:3927–3934

    Article  CAS  Google Scholar 

  17. Jia ZX, Shuai Y, Xu SD, Tan HP (2015) Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer. Opt Express 23:1096–1110

    Article  Google Scholar 

  18. Yuan HF, Kuznetsov AI, Miroshnichenko AE, Ye FY, Lukyanchuk B (2013) Directional visible light scattering by silicon nanoparticles. Nat Commun 4:66–78

    Google Scholar 

  19. Moreno F, Nietovesperinas M, Saenz JJ (2011) Electric and magnetic dipolar response of germanium nanospheres: interference effects; scattering anisotropy; and optical forces. Physics 5:30–32

    Google Scholar 

  20. Yan JH, Liu P, Lin ZY, Wang H, Chen HJ, Wang CX, Yang GW (2015) Directional Fano resonance in a silicon nanosphere dimer. ACS Nano 9:2968–2980

    Article  CAS  Google Scholar 

  21. Naraghi RR, Sukhov S, Dogariu A (2015) Directional control of scattering by all-dielectric core-shell spheres. Opt Lett 40:585–588

    Article  Google Scholar 

  22. Albella P, Moreno F, Aizpurua J (2013) Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J Phys Chem C 117:13573–13584

    Article  CAS  Google Scholar 

  23. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  24. Palik ED (1985) Handbook of optical constants of solids. Academic Press 33:189

    Google Scholar 

  25. Ci XT, Wu BT, Liu Y, Chen GG, Wu E, Zeng HP (2014) Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region. Optn 22:23749–23758

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61275057), the Basal Research Fund Project of the Liaoning Education Department (71600160), and the College Students’Innovative Training Program of Dalian Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, X., Zheng, L. et al. Highly-Tunable Magnetic and Electric Responses in the Perforated Au-SiO2-Si Multilayer Nanoshells. Plasmonics 13, 259–264 (2018). https://doi.org/10.1007/s11468-017-0507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0507-3

Keywords

Navigation