Skip to main content
Log in

Localized surface plasmon resonance properties of symmetry-broken Au–ITO–Ag multilayered nanoshells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The plasmonic properties of symmetry-broken Au–ITO–Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.J. Barrow, A.M. Funston, X.Z. Wei, P. Mulvaney, Nano Today 8, 138 (2013)

    Article  Google Scholar 

  2. V. Kulkarni, E. Prodan, P. Nordlander, Nano Lett. 13, 5873 (2013)

    Article  ADS  Google Scholar 

  3. J. Zhu, H.W. Gao, J.J. Li, J.W. Zhao, Plasmonics 8, 1003 (2013)

    Article  Google Scholar 

  4. S. Mukherjee, H. Sobhani, J.B. Lassiter, R. Bardhan, P. Nordlander, N.J. Halas, Nano Lett. 10, 2694 (2010)

    Article  ADS  Google Scholar 

  5. P.K. Jain, M.A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010)

    Article  ADS  Google Scholar 

  6. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  7. Z.Y. Fang, Y.W. Lu, L.R. Fan, C.F. Lin, X. Zhu, Plasmonics 5, 57 (2010)

    Article  Google Scholar 

  8. M.J. Banholzer, J.E. Millstone, L. Qin, C.A. Mirkin, Chem. Soc. Rev. 37, 885 (2008)

    Article  Google Scholar 

  9. J. Ye, F. Wen, H. Sobhani, J.B. Lassiter, P.V. Dorpe, P. Nordlander, N.J. Halas, Nano Lett. 12, 1660 (2012)

    Article  ADS  Google Scholar 

  10. M. Wang, M. Cao, X. Chen, N. Gu, J. Phys. Chem. C 115, 20920 (2011)

    Article  Google Scholar 

  11. M.W. Knight, N.J. Halas, New J. Phys. 10, 119 (2008)

    Article  Google Scholar 

  12. J. Ye, L. Lagae, G. Maes, G. Borghs, P.V. Dorpe, Opt. Express 17, 23765 (2009)

    Article  ADS  Google Scholar 

  13. J. He, C. Fan, J. Wang, P. Ding, G. Cai, Y. Cheng, S. Zhu, E. Liang, J. Opt. 15, 025007 (2013)

    Article  ADS  Google Scholar 

  14. J. Ye, P.V. Dorpe, W.V. Roy, K. Lodewijks, I.D. Vlaminck, G. Maes, G. Borghs, J. Phys. Chem. C 113, 3110 (2009)

    Article  Google Scholar 

  15. J. Qian, Z. Chen, J. Chen, Y. Li, J. Xu, Q. Sun, Opt. Express 20, 14614 (2012)

    Article  ADS  Google Scholar 

  16. F. Hao, P. Nordlander, Y. Sonnefraud, P.V. Dorpe, S.A. Maier, ACS Nano 3, 643 (2009)

    Article  Google Scholar 

  17. J. Ye, C. Chen, L. Lagae, G. Maes, G. Borghs, P.V. Dorpe, Phys. Chem. Chem. Phys. 12, 11222 (2010)

    Article  Google Scholar 

  18. R. Bardhan, S. Mukherjee, N.A. Mirin, S.D. Levit, P. Nordlander, N.J. Halas, J. Phys. Chem. C 114, 7378 (2009)

    Article  Google Scholar 

  19. J. Qian, Z. Chen, W. Wang, Y. Li, J. Xu, Q. Sun, Plasmonics 9, 1361 (2014)

    Article  Google Scholar 

  20. Y.M. Ching, T.W. Tee, Z. Zainal, Int. J. Eletrochem. Sci. 6, 5305 (2011)

    Google Scholar 

  21. E.D. Palik, (Academic Press, New York, 1985), p. 286

  22. SOPRA N&K Database, Accessed March 2017

  23. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  24. M. Cortie, M. Ford, Nanotechnology 18, 235704 (2007)

    Article  ADS  Google Scholar 

  25. S. Khan, R. Khan, N. Khan, Ahmad, Plasmonics 9, 461 (2014)

    Article  Google Scholar 

  26. H. Wang, Y. Wu, B. Lassiter, C.L. Nehl, J.H. Hafner, P. Nordlander, N.J. Halas, Proc. Natl. Acad. Sci. USA. 103, 10856 (2006)

    Article  ADS  Google Scholar 

  27. F. Hao, E.M. Larsson, T.A. Ali, D.S. Sutherland, P. Nordlander, Chem. Phys. Lett. 458, 262 (2008)

    Article  ADS  Google Scholar 

  28. J. Qian, W. Wang, Y. Li, J. Xu, Q. Sun, J. Phys. Chem. C 116, 10349 (2012)

    Article  Google Scholar 

  29. T.G. Habteyes, S. Dhuey, S. Cabrini, P.J. Schuck, S.R. Leone, Nano Lett. 11, 1819 (2011)

    Article  ADS  Google Scholar 

  30. O. Pena-Rodrıguez, A. Rivera, M. Campoy-Quiles, U. Pal, Nanoscale 5, 209 (2013)

    Article  ADS  Google Scholar 

  31. J.F. Ho, B. Lukyanchuk, J.B. Zhang, Appl. Phys A 107, 133 (2012)

    Article  ADS  Google Scholar 

  32. F. Shirzaditabar, M. Saliminasab, Phys. Plasmas 20, 052109 (2013)

    Article  ADS  Google Scholar 

  33. C. Liu, C.C. Mi, B.Q. Li, IEEE Trans. Nanotechnol. 10, 797 (2011)

    Article  ADS  Google Scholar 

  34. J. Li, T. Liu, H. Zheng, J. Dong, E. He, W. Gao, Q. Han, C. Wang, Y. Wu, Plasmonics 9, 1439 (2014)

    Article  Google Scholar 

  35. Y. Hu, S.J. Noelck, R.A. Drezek, ACS Nano 4, 1521 (2010)

    Article  Google Scholar 

  36. J.B. Lassiter, M.W. Knight, N.A. Mirin, N.J. Halas, Nano Lett. 9, 4326 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51474069), Natural Science Foundation of Heilongjiang Province (E2017010), Northeast Petroleum University Innovation Foundation For Postgraduate (YJSCX2017-034NEPU) as well as City University of Hong Kong Applied Research Grant (ARG) No. 9667122 and Strategic Research Grant (SRG) No. 7004644. The authors acknowledge the valuable comments and discussions with Prof. Xianli Li of the Northeast Petroleum University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Tao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Mu, H., Lu, X. et al. Localized surface plasmon resonance properties of symmetry-broken Au–ITO–Ag multilayered nanoshells. Appl. Phys. A 124, 437 (2018). https://doi.org/10.1007/s00339-018-1854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1854-4

Navigation